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Context: Analysis of
Social Networks

Represent interactions among people
and their environments as graphs

There are many different kinds of
social networks, with different
data analysis challenges

Goal: develop mathematical models
that are general enough
to handle this heterogeneity
and accurate enough to give us
interesting predictions
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Examples of social networks:
Real-life personal or sexual contacts

Vertices = people

Edges = contacts

Graphs are small,
difficult to obtain,
and noisy

Structure depends on
vertex/edge labels
(e.g. M-F sexual contact more
frequent than M-M or F-F)

Illustration of contacts from the movie Love, Actually
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Examples of social networks:
On-line social networks such as LiveJournal

Vertices = online identities
(not 1-1 with people)

Edges = “friends”
(two meanings on LiveJournal:
people whose entries one reads, and
people with permission to read one’s
semi-private entries)

Graphs are large,
easy to obtain,
and heterogeneous
(many subcommunities with different 
connection patterns)

LiveJournal connections for mcfnord,
from ljmindmap.com
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Examples of social networks:
Scientific publication databases

Two kinds of vertices,
authors and publications

Two kinds of edges,
authorship and citation

Graphs are large,
not hard to obtain,
but noisy

(difficulty: determining
when two similarly named
entities are the same)

The journal containing Euler’s original graph theory paper
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Exponential random graph
model: graphs shaped by
their local structures

Fix a set of vertices

Determine local features
• Presence of an edge
• Degree of a vertex
• Small subgraphs

Assign weights to features: positive = more likely, negative = less likely

Log-likelihood of G = sum of weights of features + normalizing constant

Different feature sets and weights give different models
capable of fitting different types of social network

Public-domain image by Mohylek on Wikimedia commons, http://commons.wikimedia.org/wiki/File:Magnifying.jpg
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Probabilistic reasoning in exponential random graphs

Most basic problem: pull the handle, generate a random graph from the model

With a generation subroutine,
we can also:

•Find normalizing constant

•Fit weights to data

•Understand typical behavior
  of graphs in this model
  (e.g. how many edges?)

•Detect unusual structures
  in real-world graphs

Crop of CC-BY-SA licensed image “Slot Machine” by Jeff Kubina on 
Flickr, http://www.flickr.com/photos/95118988@N00/347687569
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Standard method for
random generation:

Markov Chain Monte Carlo
(random walk)

Idea: start with any graph

Repeatedly choose a random edge
to add or remove

Choose whether to perform that update
based on its effect on log-likelihood

After enough steps, graph is random
with correct probability distribution

Key subproblem:
Maintain feature counts

for a dynamically changing graph
“The Mambo”, public artwork by Jack Mackie and Chuck Greening, Seattle, 1979. Modified from GFDL-licensed photo by 
Joe Mabel on Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Seattle_B%27way_Mambo_02.jpg
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0 0 1 3

0 0 10

n(n – 1)(n – 2)/6

m(n – 2)

deg(v) (deg(v) – 1)/2

number of triangles

Assumption: feature = small induced subgraph

Feature counts can be related to other more easily-counted quantities:

So if we can count triangles in a dynamic graph
we can maintain all other possible 3-vertex feature counts
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Main ideas of triangle-counting data structure (I)

Select a number D

Partition vertices into two subsets:
L: many vertices with degree less than D
H: few vertices with degree greater than D

Boys choosing sides for hockey on Sarnia Bay, Ontario, 
December 29, 1908. Public domain image from Library and 
Archives Canada / John Boyd Collection / PA-060732
http://www.collectionscanada.gc.ca/hockey/024002-2300-e.html
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Main ideas of triangle-counting data structure (II)

Maintain hash table C indexed by pairs (u,v) of vertices

C[u,v] = number of two-edge paths u—L—v

To count triangles involving an updated edge:

Look up its endpoints in C to find triangles with third point in L

Test each vertex in H to find triangles with third point in H

Hollerith 1890 census tabulator from http://www.columbia.edu/acis/history/census-tabulator.html
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How much time does it take per change?

Finding triangles involving changed edge takes O(|H|)

Each edge is involved in O(D) x—L—x paths, so
updating hash table after a change takes O(D)

If L/H partition ever changes, update counts
for all x—L—x paths through moved vertex

taking time O(D2)

How to choose D so |H| + D is small
and partition changes infrequently?

Modified from CC-BY licensed photo by smaedli on Flickr,
http://www.flickr.com/photos/smaedli/3271558744/
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A detour into bibliometrics

How to measure productivity of an academic researcher?

Total publication count: encourages many low-impact papers

Total citation count: unduly influenced by few high-impact pubs

h-index [J. E. Hirsch, PNAS 2005]: 
maximum number such that h papers each have ≥ h citations

CC-BY-SA-licensed image by Jhodson from Wikimedia
commons, http://commons.wikimedia.org/wiki/File:Bookspile.jpg

Public-domain image by Ael 2 from Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:H-index_plot.PNG
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The h-index of a graph:

Maximum number such that
h vertices each have ≥ h neighbors

H = set of h high-degree vertices
L = remaining vertices

All vertices in L have degree ≤ h

Provides optimal tradeoff
between |H| and D

Never more than sqrt(m)
Else H would have too many edges
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The h-index of some actual social networks

136 networks from Pajek, UCINET, statnet, UCI Network Data Repository
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h-index scaling as a power of n
(frequency histogram of log h / log n)

Appears to be bimodal; we don’t have an explanation
Algorithms based on h-index will be faster for networks in the first peak
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Maintaining h-index and h-partition efficiently

Group vertices by degree

Degree > h: always in H
Degree < h: always in L

Degree = h: some in H and some not (store as two separate groups)

When adding an edge to vertex v:

Move v to new degree group

If v was in L but degree now > h:
Move it into H

Find w in H with degree h, move to L
If no w exists, increase h

When removing an edge from v:

Move v to new degree group

If v was in H but degree now < h:
Move it into L

Find w in L with degree h, move to H
If no w exists, decrease h

O(1) time per update

O(1) changes to the partition per update (too frequent!)
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Even more efficient

Maintain h-index itself as before

Modify partition into H and L so that it changes less frequently
When degree exceeds 2h, move vertex into H
When degree drops below h, move vertex into L

Average number of changes to partition per update: O(1/h)

Easy part of analysis: if h remains constant,
h updates needed to move a vertex through neutral zone

Less easy: what if h itself changes?

“KZ Sachsenhausen”, crop of 
CC-BY licensed photo by
Something in between on Flickr, 
http://www.flickr.com/photos/
mo-heetoh/2491283545/
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Conclusions

Data structure for speeding up MCMC steps in ERGM simulation

O(h) time per step to update all possible 3-vertex feature counts
New graph invariant h may be of independent interest

Can be generalized to labeled vertices
(e.g. male/female or researcher/publication)
and weighted edges

Future directions

So far, analysis is theoretical
Needs experimental validation

Faster for sparse graphs?

Additional ERGM features?

CC-BY-NC-SA licensed photo of World’s End, Hampshire by PhotoGraham on Flickr, http://www.flickr.com/photos/photograham/155636430/


