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The class of Exponential-family Random Graph Models
(ERGMs):

Definition

Pη(Y = y) =
exp{ηtg(y)}

κ(η)

where

Y is a random network written as an adjacency matrix so that
Yij is the indicator of an edge from i to j ;

g(y) is a vector of the network statistics of interest;

η is a vector of parameters corresponding to the vector g(y);

κ(η) is the constant of proportionality which makes the
probabilities sum to one; intractable
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Loglikelihood

The loglikelihood for this class of models is

l(η) = ηtg(yobs)− log
∑
z∈Y

exp(ηtg(z)). (1)

which can be written:

l(η)− l(η0) = (η − η0)tg(yobs)− log Eη0

[
exp

{
(η − η0)tg(Y)

}]
, (2)
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Maximum Pseudolikelihood Estimation

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge

y c
ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

Assume no dependence among the Yij .
In other words, assume P(Yij = 1) = P(Yij = 1|Y c

ij = y c
ij ).

Then some algebra gives

log
P(Yij = 1)

P(Yij = 0)
= θt

[
g(y+

ij )− g(y−ij )
]
,

so θ is estimated by straightforward logistic regression.
Result: The maximum pseudolikelihood estimate.
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MPLE’s behavior

MLE (maximum likelihood estimation): Well-established
method but very hard because the normalizing constant κ(α)
is difficult (usually impossible) to evaluate, so we approximate
it instead.

MPLE (maximum pseudo-likelihood estimation): Easy to do
using logistic regression, but based on an independence
assumption that is often not justified.

Several authors, notably van Duijn et al. (2009), argue forcefully
against the use of MPLE.
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Back to the loglikelihood

Remember that the loglikelihood

l(η) = ηtg(yobs)− log
∑
z∈Y

exp(ηtg(z)). (3)

can be written:

l(η)− l(η0) = (η − η0)tg(yobs)− log Eη0

[
exp

{
(η − η0)tg(Y)

}]
, (4)

This leads to our first approximation for the MLE:

MCMC MLE idea: Pick θ0, draw Y1, . . . ,Ym from this model
using MCMC, then approximate the population mean above
by a sample mean.

We can take θ0 to be, for example, the MPLE.
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Existence of MLE?

There are two issues we need to be concerned with when using
MCMC MLE:

First, if the observed g(yobs) is not in the interior of the
convex hull of the sampled (MCMC generated) g(yi ), then no
maximizer of the approximate loglikelihood ratio exists.

Also, the approximation of the likelihood surface,

l(η)− l(η0) ≈ (η − η0)tg(yobs)− log
1

m

m∑
i=1

exp((η − η0)tg(Yi )), (5)

is not very good when we get far from η0.
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Quick Erdős-Rényi illustration

The Erdős-Rényi model can be
written as an ERGM, if g(y) is
the number of edges of y.

Since each edge exists independently with probability b,

P(Y = y) = (b)g(y) (1− b)n∗−g(y) =

(
b

1− b

)g(y)

(1− b)n∗ .
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Comparison of the true loglikelihood ratio and its
estimation for an Erdos-Renyi graph
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Mean value parametrization

1 We would like to move our arbitrary initial value ηo close
enough to the MLE that samples (of the statistics) generated
from η0 cover the observed statistics, g(yobs).

2 New Idea: Intuitively, then, we might try to find a way to
make the journey from η0 to the MLE in pieces.

In order to take steps toward the MLE, we need to have some idea
where we are going. We obviously don’t know where the MLE is,
but we do know that the MLE has the following property:

Definition

The MLE, if it exists, is the unique parameter vector η satisfying
Eηg(Y) = g(yobs) = ξ̂.

This is true for any exponential family (Barndorff-Nielson, 1978,
and Brown, 1986).

April 2009 Algorithmic approaches to fitting ERG models



Introduction
Partial stepping

Biological network example
References

Mean value parametrization

1 We would like to move our arbitrary initial value ηo close
enough to the MLE that samples (of the statistics) generated
from η0 cover the observed statistics, g(yobs).

2 New Idea: Intuitively, then, we might try to find a way to
make the journey from η0 to the MLE in pieces.

In order to take steps toward the MLE, we need to have some idea
where we are going. We obviously don’t know where the MLE is,
but we do know that the MLE has the following property:

Definition

The MLE, if it exists, is the unique parameter vector η satisfying
Eηg(Y) = g(yobs) = ξ̂.

This is true for any exponential family (Barndorff-Nielson, 1978,
and Brown, 1986).

April 2009 Algorithmic approaches to fitting ERG models



Introduction
Partial stepping

Biological network example
References

Mean value parametrization

1 We would like to move our arbitrary initial value ηo close
enough to the MLE that samples (of the statistics) generated
from η0 cover the observed statistics, g(yobs).

2 New Idea: Intuitively, then, we might try to find a way to
make the journey from η0 to the MLE in pieces.

In order to take steps toward the MLE, we need to have some idea
where we are going. We obviously don’t know where the MLE is,
but we do know that the MLE has the following property:

Definition

The MLE, if it exists, is the unique parameter vector η satisfying
Eηg(Y) = g(yobs) = ξ̂.

This is true for any exponential family (Barndorff-Nielson, 1978,
and Brown, 1986).

April 2009 Algorithmic approaches to fitting ERG models



Introduction
Partial stepping

Biological network example
References

'

&

$

%
r r

'

&

$

%
r r

η0 = given
η̂ = ??

ξ0 ξ̂ = g(yobs)

Ω

Ξ

Ω is the original η parameter
space (defined for the change
statistics)

Ξ is the corresponding mean value
parameter space

η0 is the (given) initial value of η
in the Markov Chain

ξ0 is the vector of mean statistics
corresponding to η0

η̂ is the (unknown) MLE

ξ̂ is the observed statistics,
g(yobs), which is the
corresponding mean statistics
vector for η̂.
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Taking steps

We now want to move toward ξ̂ = g(yobs) in mean value
parameter space. Here we specify a step length, 0 ≤ γ ≤ 1, as
a fraction of the distance toward ξ̂ that we want to traverse.
We move the fraction γ toward ξ̂ and call this point
ξ1 = γξ̂ + (1− γ)ξ̂0.

At each step, we choose this fraction to be the biggest move
toward g(yobs) that does not leave the convex hull of the
current sample.
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Finding the MCMC MLE

Next, using the sample from the model defined by η0, we
maximize the approximate loglikelihood

l(η)− l(η0) ≈ (η − η0)tg(yobs)− log
1

m

m∑
i=1

exp((η − η0)tg(Yi )), (6)

but with ξ1 substituted in place of g(yobs). The resulting
maximizer will be called η1. The process then repeats, with η1

taking the place of η0.
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Partial stepping in Mean Value Parameter space
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η0 = given
η̂ = ??

ξ0 ξ̂ = g(yobs)

h1

0. Set η0.

1. Take an MCMC sample from the model defined by
η = η0 to get ξ0.
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2. Go γ% toward ξ̂ = g(yobs) in mean value parameter
space. Call this ξ1.
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3. Use η0 in MCMC MLE to find the η that corresponds to
ξ1. Call this η1.

April 2009 Algorithmic approaches to fitting ERG models



Introduction
Partial stepping

Biological network example
References

�
�

�
�r r

�
�

�
�r r?

η0 = given
η̂ = ??

ξ0 ξ̂ = g(yobs)

h1
hhhhhhhhh2 bξ1

6
rη1

h3
E
E
E
E
E
E
E
EE?rξ̂1

h4

4. Re-estimate ξ1 from an MCMC sample from the model
defined by η = η1. Call this ξ̂1.
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5. Repeat step (2) by going γ% toward ξ̂ = g(yobs) from ξ̂1.
Call this ξ2. Also repeat steps (3) and (4) to obtain ξ̂2.
Keep going until g(yobs) is in the convex hull of the new
sample.
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6. Use MCMC MLE with ηi as the initial value to find η̂. If
we have made it into the appropriate neighborhood
around η̂, this will now be possible.
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In review:

In other words, for each t ≥ 0, we first use MCMC to draw a
random sample Y1, . . . ,Ym from the model determined by ηt ,
then we set

ξ̂t =
1

m

m∑
i=1

g(Yi );

ξt+1 = γt ξ̂ + (1− γt)ξ̂t ;

ηt+1 = arg max
η

{
(η − η0)tξt+1 − log

[
1

m

m∑
i=1

exp
{

(η − η0)tg(yi )
}]}

.

We iterate until ξ̂ = g(yobs) is in the convex hull of the statistics
generated from ξ̂t .
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A second approximation: the lognormal

Here, the ERGM is very
simple, g(y) = edges.

In other words, the model
is binomial.

Nevertheless, naive MCMC approximation of the log likelihood
ratio is not good far from θ0, even for gigantic samples.
One possible remedy: Assume (θ − θ0)tg(Y ) is normally
distributed in

`(θ)− `(θ0) = (θ − θ0)tg(yobs)− log E θ0

[
exp

{
(θ − θ0)tg(Y )

}]
.
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Example Bionet: E. Coli (Salgado et al 2001)

A node is an operon

Edge A→ B means A
encodes a transcription
factor that regulates B.

Green indicates
self-regulation
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Another ERGM for the E. Coli network

We fit a model similar to that of Saul and Filkov (2007)

Term(s) Description:

Edges Number of Edges

2-Deg, . . . , 5-Deg Nodes with degree 2, . . . , 5

GWDeg Single statistic: Weighted sum of
1-Deg, . . . , (n − 1)-Deg with weights
tending to 1 at a geometric rate

model <- ergm(ecoli2 ~ edges + degree(2:5) +
gwdegree(0.25, fixed=TRUE), MPLEonly=TRUE)

MPLE
edges degree2 degree3 degree4 degree5 gwdegree
-5.35 -2.58 -3.06 -2.39 -1.85 8.13
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MPLE fit is degenerate

With the MPLE we encounter problems:

Here is a time-series plot of the
edge-count of the 25 networks
generated from the MPLE:
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A sample from the MPLE-fitted model

edges
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degree4
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46
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0

15 30 10 40

gwdegree

Iteration 1:  Yellow = 0.06(Red) + 0.94(Green)

Red: g(yobs)

Green: Sample mean

Theory: No maximizer of the
approximated likelihood exists
because g(yobs) is not in the
interior of the convex hull of
the sampled points.

However, the likelihood
depends on the data only
through g(yobs)

Idea: What if we pretend
g(yobs) is the yellow point?
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A sample from a model with a better θ0

edges

20 50 80 30 50 460 500
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Iteration 2:  Yellow = 0.08(Red) + 0.92(Green)

For θ0 we have replaced
the MPLE by the MCMC
“MLE” obtained by
pretending that g(yobs)
was the yellow point on
the previous slide.
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A sample from a model with a better θ0

edges
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Iteration 3:  Yellow = 0.18(Red) + 0.82(Green)

Continue to iterate. . .
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A sample from a model with a better θ0
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Iteration 4:  Yellow = 0.36(Red) + 0.64(Green)
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A sample from a model with a better θ0
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Iteration 5:  Yellow = 0.53(Red) + 0.47(Green)
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A sample from a model with a better θ0

edges

60 80 100 10 25 40 440 470
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Iteration 6:  Yellow = 1(Red) + 0(Green)

Finally, we don’t need to
pretend; the true g(yobs)
is actually interior to the
convex hull of sampled
points. . .
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A sample from a model with a better θ0

edges
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Final Iteration (#7):  Green = mean, Yellow=observed

. . . so now we can take a
larger sample and get a
better final estimate of θ.
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Finally, an MLE

Original MPLE:

edges degree2 degree3 degree4 degree5 gwdegree
-5.35 -2.58 -3.06 -2.39 -1.85 8.13

Final (approximated) MLE:

edges degree2 degree3 degree4 degree5 gwdegree
-5.06 -1.45 -2.35 -2.28 -2.91 1.77

We know this is close to the true MLE θ̂ because the true MLE
uniquely gives Eθ̂g(Y ) = g(yobs).
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Failure of first approximation in this example

edges

0 40 80 0 10 25 350 450
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Iteration 5:  Yellow = 0.13(Red) + 0.87(Green)

A steplength of 0.01 is
too small in this case.
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Conclusions

MPLE looks increasingly dangerous; it can mask problems
when they exist and miss badly when they don’t

Naive MCMC MLE may not perform well even in very simple
problems, but it may be modified. Here, we had success in a
hard problem using two ideas:

(a) Partial stepping toward the MLE in mean-value parameter
space;

(b) A log-normal approximation to the normalizing constant.

By making MLE more and more automatic, we hope that
scientists will be able to focus on modeling, not programming.
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Thank You!
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