Dynamic modeling of organizational coordination over the course of the Katrina disaster

Zack Almquist ${ }^{1}$
Ryan Acton ${ }^{1}$, Carter Butts ${ }^{1} 2$

Presented at MURI Project All Hands Meeting, UCI April 24, 2009

[^0]Introduction
Data
Dynamic models
Model
Notation
Model Assumptions
One-lag logistic regression
Results
Model Checks
Analysis
Further research and Problems
Summary

Research questions: dynamic model of Katrina EMON

- What can we say about the collaboration network as it changes over time?
- What influence has the past had on present collaboration?
- What structural effects predict collaboration?
- Does homophily predict the EMON?

Introduction

Katrina disaster, 2005: ?

Data basics

- 1577 organizations over 13 time points
- Most organizations are isolates (i.e. have no relationships)
- This means collaboration is a rare event
- 1755 undirected ties over 13 days

Current approaches to modeling dynamic networks

1. Actor oriented dynamic modeling

- ???

2. Dynamic exponential random graph modeling (ERGM)

- ??

3. Relational event modeling

- ?

Issues. . .

- Unfortunately these models are quite computationally intensive
- Current software and algorithms cannot handle a data set as large as this one.

Possible solution ...

- One possible solution:
- One-lag logistic regression
- Given certain assumptions can be derived from the ERGM family.
- Advantages of the one-lagged logistic model
- Similar to traditional cross section regression methods
- Network-regression and network-logistic regression ????
- Allows for time-dependence through the lag term

Computational problems

- Can't use software readily available such as R's GLM function.
- One solution: compute MLE directly
- Another possibility is subsampling

Notation

- matrix $Y_{t}=\left(y_{t, j}\right)_{1 \leq i, j \leq n}$
- where $y_{i j}=1$ or 0
- Simple graph
- $\Rightarrow y_{i i}=0$ and $y_{i j}=y_{j i}$

Model Assumptions

- Assume that the population of organizations stays constant over the 13 days
- i.e. no entry or exit of organizations
- This is a standard assumption made in dynamic network models
- This assumes all organizations observed over the 13 days are at risk for collaborating in the time period

Model Assumptions

- Markov assumption (?)
- $Y_{t} \mid Y_{t-1}$ is independent of Y_{1}, \ldots, Y_{t-2}
- Time-homogeneous Markov assumption
- $P\left(Y_{t+1} \mid Y_{t}\right)=P\left(Y_{t} \mid Y_{t-1}\right)$
- Conditional edge independence
- $y_{t, i j} \mid y_{t-1, i j}(i \neq j)$ is independent of all other $y_{t, k l} \mid y_{t-1, k l}$, where $k, I \neq i, j$

One-lag logistic model: ERGM Family

$$
\operatorname{Pr}\left(Y_{t+1}=y \mid Y_{t}=y_{t}, \theta\right) \propto \exp \left\{\sum_{i, j}\left(y_{i j} * \theta^{T} * x\left(y_{t}, i, j\right)\right)\right\}
$$

Under the aforementioned assumptions the model reduces to the product of

$$
\operatorname{Pr}\left(Y_{t+1, i j}=1 \mid Y_{t}=y_{t}, \theta\right)=\operatorname{logit}^{-1}\left\{\theta^{\top} * x\left(y_{t}, i, j\right)\right\}
$$

Where $x\left(y_{t}, i, j\right)$ the covariate function of y_{t}.

One-lag logistic model for Katrina

- Dependent variable:
- y_{t}
- Independent variables:
- y_{t-1} (lag term)
- y_{t-1}^{2} (square lag term, two path, shared partner)
- Triangle (completed triad)
- Degree (preferential attachment)
- Homophily and propinquity (exogenously defined)
- Same HQ state
- Same HQ city
- Same FEMA region
- Same type (of organization)
- Same scale (of organization)

	Model 1
BIC	30740.45
Intercept	$-10.958^{* * *}$
	(0.069)
y_{t-1}	
y_{t-1}^{2}	
Degree	
Same HQ state	$2.668^{* * *}$
	(0.106)
Triangle dummy	
Same HQ city	$0.844^{* * *}$
	(0.063)
Same FEMA region	$-0.418^{* * *}$
	(0.106)
Same Type	$1.293^{* * *}$
	(0.065)
Same Scale	$0.605^{* * *}$
	(0.054)

	Model 1	Model 2	Model 3
BIC	30740.45	21833.942	20464.075
Intercept	$-10.958^{* * *}$	$-9.689^{* * *}$	$-10.5^{* * *}$
	(0.069)	(0.033)	(0.06)
y_{t-1}^{2}		$9.917^{* * *}$	$8.194^{* * *}$
y_{t-1}^{2}	(0.062)	(0.071)	
Degree			
Triangle dummy			
Same HQ state	$2.668^{* * *}$	(0.087)	
	(0.106)	$0.586^{* * *}$	
Same HQ city	$0.844^{* * *}$	(0.076)	
	(0.063)	$0.35^{* * *}$	
Same FEMA region	$-0.418^{* * *}$	(0.085)	
	(0.106)	$0.384^{* * *}$	
Same Type	$1.293^{* * *}$	(0.06)	
	(0.065)	$0.535^{* * *}$	
Same Scale	$0.605^{* * *}$	(0.06)	
	(0.054)		

	Model 1	Model 2	Model 3	Model 4
BIC	30740.45	21833.942	20464.075	20180.297
Intercept	$-10.958^{* * *}$	-9.689***	$-10.5^{* * *}$	-11.17***
	(0.069)	(0.033)	(0.06)	(0.079)
y_{t-1}		9.917***	8.194***	8.612***
		(0.062)	(0.071)	(0.081)
y_{t-1}^{2}				
Degree				0.123***
				(0.007)
Triangle dummy				
Same HQ state	$2.668^{* * *}$		1.607***	1.325***
	(0.106)		(0.087)	(0.103)
Same HQ city	0.844***		0.586***	1.113***
	(0.063)		(0.076)	(0.091)
Same FEMA region	$-0.418 * * *$		0.35***	0.33***
	(0.106)		(0.085)	(0.095)
Same Type	1.293***		0.384***	1.239***
	(0.065)		(0.06)	(0.077)
Same Scale	0.605***		0.535***	-0.18*
	(0.054)		(0.06)	(0.072)

	Model 1	Model 2	Model 3	Model 4	Model 5
BIC	30740.45	21833.942	20464.075	20180.297	19785.336
Intercept	-10.958***	-9.689***	-10.5***	-11.17***	-10.835***
	(0.069)	(0.033)	(0.06)	(0.079)	(0.07)
y_{t-1}		9.917***	8.194***	8.612***	7.975***
		(0.062)	(0.071)	(0.081)	$\begin{aligned} & (0.082) \\ & 2.105^{* * *} \end{aligned}$
y_{t-1}^{2}					
					(0.097)
				0.123***	0.133***
Triangle dummy				(0.007)	(0.006)
					-2.202***
					(0.103)
Same HQ state	$2.668^{* * *}$		$1.607^{* * *}$	1.325***	1.362***
	(0.106)		(0.087)	(0.103)	(0.114)
Same HQ city	0.844***		0.586***	1.113***	1.158***
	(0.063)		(0.076)	(0.091)	(0.09)
Same FEMA region	-0.418***		0.35***	0.33***	$-0.277^{* *}$
	(0.106)		(0.085)	(0.095)	(0.101)
Same Type	1.293***		0.384***	1.239***	0.894***
	(0.065)		(0.06)	(0.077)	(0.071)
Same Scale	0.605***		0.535***	-0.18*	0.631***
	(0.054)		(0.06)	(0.072)	(0.065)

Some adequacy checks . . .

Model 1

	0	1
0	14910358.00	1754.00
1	0.00	0.00
	Model 2	
	0	1
0	14909697.00	924.00
1	661.00	830.00

Some adequacy checks .

Model 3

	0	1
0	14909959.00	1164.00
1	399.00	590.00
	Model 4	
	0	1
0	14909944.00	1156.00
1	414.00	598.00

Some adequacy checks . . .

Model 5

	0	1
0	14910018.00	1250.00
1	340.00	504.00

Analysis

1. Lag term

Analysis

1. Lag term

- Greatly increases the chance of collaboration, but decreases as we add more terms

Analysis

1. Lag term

- Greatly increases the chance of collaboration, but decreases as we add more terms

2. Shared partner term (two path)

Analysis

1. Lag term

- Greatly increases the chance of collaboration, but decreases as we add more terms

2. Shared partner term (two path)

- Positive for two paths, but negative for completed triads- brokerage rather then completed triads

Analysis

3. Preferential Attachment

Analysis

3. Preferential Attachment

- Positive and significant, but never big enough to overcome the intercept.

Analysis

3. Preferential Attachment

- Positive and significant, but never big enough to overcome the intercept.

4. Homophily and propinquity

Analysis

3. Preferential Attachment

- Positive and significant, but never big enough to overcome the intercept.

4. Homophily and propinquity

- Same HQ state, city, and type -positive and significant
- FEMA and scale- sometimes positive, sometimes negative, always significant (??)

Further research

- Extend the one-lag logistic regression model into a inhomogeneous time model
- Attempt to use this model to simulate the evolution of the Katrina collaboration network
- Attempt to apply more sophisticated models to a portion of the data
- Compare different model results

Summary

- One-lag logistic regression performs reasonably well on the data
- We find that yesterday's collaboration effects todays collaboration
- That preferential attachment, and homophily increase the chance of collaboration
- A slight tendency towards two paths and not completed triads.

THANK YOU.

Bibliography I

[^0]: ${ }^{1}$ Department of Sociology, University of California-Irvine
 ${ }^{2}$ Institute for Mathematical Behavioral Sciences, UC-Irvine

