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Abstract

Models for cross-sectional network data have become increasingly well-

developed in recent decades, and are widely used. Questions remain, how-

ever, about the connection between such cross-sectional models and the

behavioral processes from which the corresponding networks were presum-

ably generated. Here, we present a behavioral micro-foundation for such

networks, based on a continuous time stochastic choice mechanism. As we

show, the equilibrium behavior of this process under appropriate condi-

tions can be expressed in exponential family form, allowing estimation of

individual preferences using existing methods. We demonstrate the appli-

cability of the approach via an analysis of advice-seeking behavior among

managers within a high-tech firm, providing evidence of preferences for

seeking advice from “upstream” sources net of covariate and other effects.
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1 Background and Introduction

Models for cross-sectional network data have become increasingly well-developed
in recent decades, particularly those based on the use of discrete exponential
family modeling. At the same time, however, such models have been criticized
for being difficult to interpret, and (more fundamentally) for lacking a principled
connection with the behavioral processes from which the corresponding networks
were presumably generated. Although explicitly dynamic models provide one
response to this problem (see, e.g., Snijders (1996); Robins and Pattison (2001);
Snijders (2005)), these require longitudinal data which is frequently impossible
or impractical to obtain. The question thus arises of whether there exists a
principled means of supplying a behavioral micro-foundation for at least some
classes of cross-sectional network models. Here, we present such a foundation,
based on a continuous time stochastic choice mechanism. As we show, the equi-
librium behavior of this process under appropriate conditions can be expressed
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in exponential family form, allowing estimation of individual preferences using
existing methods. After deriving these equilibrium results, we demonstrate the
applicability of the approach via an analysis of advice-seeking behavior among
managers within a high-tech firm, providing evidence of preferences for seeking
advice from “upstream” sources net of covariate and other effects.

1.1 Formal Preliminaries

The networks which concern us here can be represented as simple undirected and
directed graphs of fixed order. We represent both by ordered pairs G = (V,E),
where V is the set of vertices and E is a set of edges on V . Throughout, we
shall use n = |V | to refer to the order of the graph being described (where | · |
denotes cardinality). For simple graphs representing undirected relations, the
elements of E are two-element subsets of V ; in the directed case, the elements
of E are ordered pairs of vertices. Frequently, we will represent graphs via their
adjacency matrices. The adjacency matrix of a graph, G, is the n × n binary
matrix, y, such that yij = 1 if {i, j} ∈ E in the undirected case (or (i, j) ∈ E
in the directed case) and yij = 0 otherwise. Given a set of multiple graphs
G1 = (V,E1), . . . , Gm = (V,Em) on common vertex set V , we can easily extend
this notation by defining the corresponding adjacency array, y, as the m×n×n
binary array such that yijk = 1 if {j, k} ∈ Ei ((j, k) ∈ Ei in the directed case)
and yijk = 0 otherwise. The adjacency matrix for the ith graph in such an array
clearly corresponds to yi··, and is referred to as the ith slice of y.

Adjacency matrices and arrays are particularly useful for describing random
graphs, i.e., random variables whose state space consists of a graph set. We
will here designate random graphs via their adjacency matrices, using capital
letters to denote random variables and lower case letters to denote realizations.
Thus, a random graph G may have (random) adjacency matrix Y , within which
the presence of an i, j edge is denoted by the binary random variable (or edge
variable) Yij . A corresponding realization of G would then be represented by
the adjacency matrix y, with the state of the i, j edge indexed by yij . This
notation extends directly to adjacency arrays. In some cases, we will also want
to refer to edge variables within a random graph excluding a particular edge
variable, or with the states of particular variables held constant. To this end,
we define Y c

ij to be the set of all edge variables of Y other than {i, j} (directed
case, (i, j)); likewise, yc

ij refers to all elements of realization y other than the
i, jth. A related situation arises when we wish to describe a graph structure in
which a particular edge is forced to be either present or absent: Y +

ij and Y −
ij are

respectively employed to denote random matrices with Y +
ij = 1 and Y −

ij = 0 and

Y +
kl = Y −

kl = Ykl for {i, j} 6= {k, l} (directed case, (i, j) 6= (k, l)). Realization
matrices y+

ij and y−
ij are defined in like manner.

Finally, we note that when describing stochastic processes on graphs (i.e.,
random graph processes), we will employ sequences of random adjacency ma-
trices or arrays indexed by parenthetical superscripts (e.g., Y (1), Y (2), . . .). The
same principle will be applied to realizations of such processes; hence, a real-
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ization of the above process might be denoted y(1), y(2), . . .. For processes on
graph sets, we simply apply the same notation to the corresponding adjacency
arrays.

2 Cross-sectional Network Models

Cross-sectional network models have been the subject of considerable research
over the past several decades (see, e.g., Holland and Leinhardt (1981); Frank and
Strauss (1986); Wasserman and Pattison (1996); Pattison and Robins (2002);
Wasserman and Robins (2005); Snijders et al. (2006); Hunter and Handcock
(2006) and related references), one result of which has been the emergence of a
general family of formalisms for representing probability distributions on graphs.
Specifically, let Y be the adjacency matrix of order-n random graph G, and let
Yn be the support of Y . We may then write the pmf of Y in exponential family
form as

Pr (Y = y |ρ ) =
exp (ρ (y))

∑

y′∈Yn

exp (ρ (y′))
IYn

(y), (1)

where ρ : Yn 7→ R is a graph potential, and IYn
is an indicator function for

membership in Yn. Typically, the graph potential is expressed in canonical
form as ρ (y) = θT t (y), with t : Yn 7→ R

p being a vector of sufficient statistics,
and θ ∈ R

p a vector of parameters. Although sometimes (incorrectly) described
as a model in its own right, the framework of Equation 1 is more properly
regarded as a way of representing distributions on Yn; in particular, observe
that by choosing t to correspond to a |Yn|-dimensional vector of indicators for
the state of Y , any pmf on a graph set of fixed order may be written in this
fashion. Notwithstanding the potential for confusion, it is both traditional and
useful to refer to network models parameterized in exponential family form as
exponential random graph (or ERG) models, and we follow this practice here.

Although most work with ERGs has focused on the single-network case, there
is nothing in the above to force such a restriction. Indeed, simply taking Y and
Yn to refer to m-slice adjacency arrays allows Equation 1 to be applied to graph
sets without additional difficulties. General issues relating to parameterization
of such “multivariate” exponential random graph (or MERG) models have been
discussed by Wasserman and Pattison (1996); Pattison and Wasserman (1999)
and Robins et al. (1999), although their use dates back to the original work by
Holland and Leinhardt (1981).

The attractiveness of ERGs as a general framework for cross-sectional net-
work modeling stems from several sources. As already noted, the ERG formal-
ism is complete on the set of finite order graphs and graph sets1, in the sense
that all models for such entities can be written (albeit not always parsimo-
niously) in ERG form. As special cases of the more general discrete exponential
families (Brown, 1986; Barndorff-Nielsen, 1978), considerable inferential theory

1In fact, it is also complete on graphs of countable order, though such models are not

guaranteed to have a finite parameterization.
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exists for ERG models (see, e.g., Hunter and Handcock (2006); ? for recent
reviews); thus, fairly general methods of parameter estimation, hypothesis test-
ing, model selection, and adequacy evaluation exist for models parameterized
in this form. Similarly, general algorithms for simulation of ERG models exist
(e.g., Snijders (2002); Hunter et al. (2008)) based on Markov chain Monte Carlo
(MCMC) methods. Finally, the ERG form is well-suited to parameterization
based on dependence hypotheses, a notion from spatial statistics (Besag, 1974)
which can be adapted to produce families of network models satisfying partic-
ular assumptions regarding the interdependence of edges (see, e.g., Frank and
Strauss (1986); Pattison and Robins (2002)).

As these observations suggest, the ERG framework acts as a sort of “lingua
franca” for cross-sectional network modeling: models translated into ERG form
can immediately exploit a broad family of inferential and simulation tools, and
can moreover be compared and even combined on a principled basis. While the
creation of this framework represents a tremendous advance, it does nothing to
address the content of network models – this last must necessarily come from
a combination of empirical investigation, prior substantive knowledge regarding
the structures under study, and an enumeration of modeling objectives. With
the exception of models based on the above-mentioned dependence hypotheses
and certain obvious covariate effects, however, linking substantive theory with
ERG models has proven difficult. The major portion of the text that follows is
concerned with this latter problem. Before turning to this, however, we pause
to consider a few other important prefatory matters.

2.1 Potentials, Conditional Probabilities, and ERGs

The ERG (in the sense of Equation 1) specifies the joint probability of an
entire graph (or set thereof) as a single observation. Direct calculation of
such probabilities are rarely feasible, due to the normalizing factor Z (ρ,Yn) =
∑

y′∈Yn

exp (ρ (y′)). Z corresponds directly to the partition function of statis-
tical mechanics, and (through its derivatives) implicitly contains a wealth of
information regarding the behavior of the corresponding model. (See Strauss
(1986); ? for related discussion.) Regrettably, Z has closed-form expressions
for only a handful of models, and is generally incomputable due to the large
number of elements in the corresponding sum (and the roughness of the under-
lying function). The various computational strategies for coping with this issue
do not concern us here. However, the problem of normalization does motivate
the general interest in conditional probabilities and probability ratios vis a vis
models in ERG form. For instance, let y, y′ ∈ Yn be elements of the support of
Y . Then, from Equation 1,

Pr (Y = y′ |ρ )

Pr (Y = y |ρ )
=

exp (ρ (y′))
∑

y′′∈Yn

exp (ρ (y′′))

∑

y′′∈Yn

exp (ρ (y′′))

exp (ρ (y))
(2)

= exp (ρ (y) − ρ (y)) . (3)
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Thus, the log-odds of y′ versus y reduces to their difference in potentials, with Z
falling out of the equation. This observation leads immediately to an expression
for the conditional probability of a single edge, given the rest of the graph:

Pr
(

Y = y+
ij

∣

∣yc
ij , ρ

)

Pr
(

Y = y−
ij

∣

∣yc
ij , ρ

) = exp
(

ρ
(

y+
ij

)

− ρ
(

y−
ij

))

(4)

Pr
(

Y = y+
ij

∣

∣yc
ij , ρ

)

1 − Pr
(

Y = y+
ij

∣

∣yc
ij , ρ

) = exp
(

ρ
(

y+
ij

)

− ρ
(

y−
ij

))

(5)

Pr
(

Y = y+
ij

∣

∣yc
ij , ρ

)

=
exp

(

ρ
(

y+
ij

)

− ρ
(

y−
ij

))

1 + exp
(

ρ
(

y+
ij

)

− ρ
(

y−
ij

)) (6)

=
1

1 + exp
(

ρ
(

y−
ij

)

− ρ
(

y+
ij

)) (7)

= logit−1
(

ρ
(

y+
ij

)

− ρ
(

y−
ij

))

. (8)

Here again, we are left with a simple expression in terms of potential differences
– in this case, the conditional probability of an edge is seen to be the inverse
logit of the change in potential associated with that edge (holding the rest of
the graph constant). This is, of course, the basis for the well-known conditional
logistic interpretation of the ERG model, and for the standard ERG pseudo-
likelihood estimator (Frank and Strauss, 1986; Strauss and Ikeda, 1990). Our
use for the expression is rather different: as we shall see, it forms an important
element in our linkage of behavioral choice models with network structure. Be-
fore coming to this, however, we round out this section of the paper by reviewing
the connection between cross-sectional ERGs and a basic family of generative
processes.

2.2 Generative Processes

Although we have thus far discussed ERGs entirely within a cross-sectional
framework, they are also associated with various generative processes. Most
generically, it is obviously the case that a temporal aggregation or cross-section
of any fixed-order network process can described in the form of Equation 1; this
is a trivial consequence of the already-noted fact that all distributions on Yn can
be written in this form. Such an observation is not especially helpful in linking
ERGs with generative processes, however, since it provides no indication of
how the appropriate potential, ρ, might be found. Moreover, graph potentials
for aggregations or cross-sections of dynamic processes will not in general be
invariant to sampling time, length of aggregation window, or even the initial
conditions of the underlying process. Thus, one cannot hope to find a completely
generic way to map generative processes onto ERGs (much less the reverse).

Despite this caveat, there are certain families of generative processes which
do give rise to cross-sectional distributions in a predictable manner. Typically,
these processes have been studied in the context of statistical simulation of
ERG draws, e.g. in support of inference or model assessment (e.g. Crouch
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et al. (1998); Snijders (2002); Hunter et al. (2008)), with a focus on properties
relating directly to such goals (e.g. simulation accuracy and efficiency). Our
interest is somewhat different: we will ultimately use the generative process to
link micro-level behavior with cross-sectional network structure. Nevertheless, it
happens that we can exploit this pre-existing work in furthering our theoretical
objectives.

Our focus here is on a particularly simple process, namely the single-update
Gibbs sampler (Snijders, 2002). Let us begin by positing some support for a
process with cross-section Y , Yn, from which some initial graph Y (0) is drawn
from an ERG with arbitrary potential ρ0. Let E∗(Yn) denote the set of edge
variables of Y . We now form the sequence Y (1), Y (2), . . . via the following iter-
ative procedure:

1. At the ith iteration, draw an edge variable Yjk from a variable selection
process Si on E∗(Yn);

2. With probability Pr

(

(

Y +
jk

)(i−1)
∣

∣

∣

∣

(

Y c
jk

)(i−1)

, ρ

)

, let
(

Y (i) = Y +
jk

)(i−1)

.

Otherwise, let Y (i) =
(

Y −

jk

)(i−1)

.

The following is then a standard result (e.g., Gilks et al. (1996)):

Proposition 1. Let ρ be a finite potential on Yn, and let Si be a process on
E∗(Yn) such that

1. Si is independent of Y (1), Y (2), . . . , Y (i); and

2.
∑

i I(Si = Yjk) → ∞ as i → ∞ almost surely, for all j, k such that
Yjk ∈ E∗(Yn).

Then the sequence Y (0), Y (2), . . . , Y (i) approaches ERG(ρ) in distribution as i →
∞.

As this is a special case of the well-known random scan Gibbs sampler, we
do not provide a proof of this proposition here. Interested parties are referred
to the above review chapter and included references for details.

Proposition 1 holds because the iterative procedure forms a Markov chain on
the elements of Yn whose equilibrium distribution is ERG(ρ). Irreducibility and
aperiodicity of the chain stems from the fact that the conditional probability of
setting an edge to be present or absent is bounded away from 0 or 1 (itself a
consequence of the finiteness of ρ combined with Equation 8), along with the
properties of S; that the resulting equilibrium distribution is the correct one is
less obvious, but is a known result for chains of this type.

For our purposes, several points bear emphasis. First, the above procedure
provides an example of a generative process based on local structural adjust-
ments, which ultimately gives rise to a known cross-sectional distribution. Sec-
ond, the local adjustments on which the process is based are Bernoulli trials,
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whose probabilities are inversely logistic in the potential difference between suc-
cessive graphs. Third, the selection of the initial graph state is wholly arbitrary,
in the sense that it does not impact the equilibrium distribution of the process.
Finally, the asymptotic cross-sectional properties of the graph process do not
depend upon the details of the process by which edge variables are selected for
updating – so long as the specified conditions are met, edge variables may be
updated in any order (and, indeed, irregularly) without affecting the long-run
behavior of the chain. Taken together, these properties suggest an interesting
possibility: if it were possible to map a plausible behavioral process to the sam-
pling algorithm, then one could in principle use its equilibrium distribution to
predict the long-run cross-sectional behavior of the corresponding social system.
It is precisely this notion that we explore in the section which follows.

3 Cross-sectional Distributions from Stochastic

Choice

In the previous section of this paper we focused on the definition of cross-
sectional network models, closing with the description of a simple family of
stochastic processes whose equilibria correspond to specified ERG distributions.
In this section, we build on these results by demonstrating a family of behav-
iorally reasonable micro-processes that belong to the above class, and specify
sufficient conditions for relating their resulting equilibria to individual prefer-
ences. We begin by describing a simple stochastic choice process for social
networks, subsequently showing how this process can lead to a specified equilib-
rium distribution in the case of unilateral edge control (i.e., relations for which
any given edge is controlled by a single party). Next, we generalize this to the
more complex case of bilateral edge control (i.e., relations for which any given
edge is jointly controlled by two parties), closing the section with a framework
for the general multilateral case.

3.1 Agent Choice Framework

The core of our behavioral micro-process is a stochastic choice model, through
which individuals are presumed to make decisions which impact (but may or
may not entirely determine) a set of relationships. We begin by assuming a
manifest relation, Y , on some fixed vertex set V . The edges of Y are presumed
to arise from the actions of one or more agents, who are collectively denoted by
the set A. It is important to note that the set of agents need not be the same
as (nor even have a non-empty intersection with) the set of vertices, although
V = A is a useful special case. The connection between agents and the edges
they affect is formalized via a set of control lists, which specify the agents whose
behaviors govern any given edge. Specifically, for each edge variable Yij , we de-
fine the corresponding control list cij ⊆ A to be the minimum lexically ordered
ℓ-tuple of agents whose behaviors determine the state of Yij . (The assumption
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of lexical ordering is not technically necessary, but considerably simplifies sub-
sequent notation.) The control list length, ℓ, is referred to as the control number
for Y , and is of considerable substantive importance. Networks for which ℓ = 1
are said to exhibit unilateral edge control, as the state of each edge is determined
by the behavior of a single agent. Similarly, networks with ℓ = 2 are said to
exhibit bilateral edge control, with ℓ > 2 reflecting the more general multilateral
case. Particular issues arise in each of these settings, and we therefore treat
them in greater detail below. In passing, we note that one can in principle posit
cases of mixed control, in which ℓ varies across edge variables. Although we
here limit ourselves to the “pure” cases in which ℓ is constant, our framework
generalizes to mixed control in a fairly natural way.

Given an agent set and associated control structure, we must next posit a
framework for representing agent choices regarding his or her associated edges.
Here, we propose to do this via a set of ℓ latent graphs, each of which encodes
the current decision of a set of agents regarding the edges of Y . Specifically,
we define the prosphoric array for Y to be an ℓ × N × N adjacency array,
P , whose i, j, k cell contains the current decision state of the ith agent in cjk

regarding Yjk. The manner in which the cells P·jk determine Yjk – and hence
the behavioral interpretation of the associated “decision” – is relation-specific,
and will be discussed in detail below. Intuitively, however, it is often useful
to think of the prosphoric array as representing “offers” or “overtures” for the
creation or maintenance of ties, whose appropriate coincidence (depending on
both ℓ and on the properties of the relation) may lead to the presence of the
associated manifest relation. While this analogy is the basis for the terminology
employed here (“prosphoric” from the Greek for “offer” or “overture”), it should
be stressed that we do not presume that such sub-relational interactions are
actually taking place; rather, we consider the prosphoric array as a formal device
for aggregating agent choices, which may or may not have any direct relationship
to the physical or social details of the interactive process through which the
ties of Y are actually created. In particular, it should be noted that the slice
structure of P is determined by the lexical ordering of A, and is thus semi-
arbitrary. That said, the joint structure of P is meaningful in terms of its
relationship to the manifest relation, Y , and it is to this that we now turn.

3.1.1 Unilateral Edge Control

To express the relationship between individual decisions and the resultant graph
structure, we posit a resolution function, r, which takes the set of possible
prosphoric arrays into Yn (the set of possible manifest networks). In the simplest
case of unilateral edge control (i.e., ℓ = 1), r is simply the identity function:
that is, Yjk = P1jk. As this implies, a manifest edge under unilateral control
exists if and only if its controlling agent chooses it, and hence the meaning of a
decision within the prosphoric array is simply that of whether or not to maintain
the corresponding relationship.

Unilateral edge control is an obvious model for directed relations such as ad-
vice seeking, in which each individual has direct control over his or her outgoing
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ties. In this case (which we will revisit empirically in a subsequent section) it
is reasonable to let V = A, and to set cij = (j) for all (i, j) pairs. While such
examples are easy to come by, they are not the only phenomena which can be
modeled in this way. For instance, consider an organizational design problem,
in which managers within different divisions of an organization have discretion
to define the formal reporting relationships for their own divisions (with the
CEO defining reporting relationships among the division heads). In this case,
A ⊂ V , and cij for a given relationship would be the identity of the controlling
manager. One can easily conceive of related applications on undirected rela-
tions (e.g., design of communication channels rather than reporting relations),
relations for which the set of agents is not contained within the set of vertices
(e.g., design of physical systems, such as road networks), etc. What all of these
cases have in common is that edges are contingent upon the behavior of a single
decision maker, and that the corresponding decision is simply one of whether
or not to maintain the edge in question.

3.1.2 Bilateral Edge Control

Although many relations are unilateral, there are likewise many examples of re-
lations which depend upon the actions of two parties. In such cases, ℓ = 2, and
more than one substantively distinct mapping from P to Y is possible. Of the
possible variants, two forms are of clear sociological interest and are discussed
in detail here. First, we have the case in which a manifest edge exists if and
only if both controlling parties agree to it; we refer to these as symphonic rela-
tions (from “symfonia,” or agreement), and define the corresponding resolution
function as r(P )jk = P1jkP2jk. The second case is that in which a manifest
edge exists if and only if some controlling party agrees to it. We refer to such
relations as epibolic (from “epiboli,” or imposition), expressing the intuition
that either party can “impose” the relationship upon the other. The resolution
function for an epibolic relation is r(P )jk = 1 − (1 − P1jk) (1 − P2jk), i.e., a
logical OR on the elements of P·jk. Although one can identify other cases as
well (e.g., a logical XOR), symphonic and epibolic relations constitute the bulk
of those currently studied within the literature. Given this, we take a moment
to consider each in turn before proceeding to the case of general multilateral
relations.

Symphonic Relations As with unilateral relations, bilateral symphonic re-
lations are obvious models for a wide array of interpersonal networks. For
instance, many notions of friendship (e.g., the philos of Krackhardt (1992))
are defined in such a way as to require mutual assent, and such is of practical
necessity for many forms of collaboration (e.g., in task performance following
disasters). The typical scenario for such relations is an undirected graph, Y ,
with A = V and cjk = (j, k) (where j < k in lexical order). Although the above
gives the impression that symphonic relations occur only in cases of positive in-
teraction, this is not the case. Consider, for instance, the interaction between an
infrastructure designer or maintainer (e.g., a civil authority) and an adversary

9



(e.g., a hostile military force) in the context of a transportation network. For
an edge (e.g., a roadway) to be passable, it must both be built/maintained by
the infrastructure designer and allowed to operate by the adversary. Obviously,
the designer and adversary have very different goals, and their interaction is
strongly negative. Nevertheless, such a situation can be treated as a symphonic
relation with A consisting only of the designer and adversary, and cjk being the
ordered elements of A for all j, k.

As with the unilateral case, there is no necessary correspondence between
the resolution mechanism and the directedness of the edges of Y , the positiv-
ity/negativity of the relation, nor the elements of A. Modeling Y as symphonic
does, however, fix the meaning of the decision Pijk = 1 to be “the ith control-
ling party of the j, k edge chooses to implement the edge, if the other party
concurs.” So long as one bears in mind that “concurrence” may be tacit (and
need not connote a positive-valence interaction among the controlling parties),
this provides a clear sense of the decision in question.

Epibolic Relations If friendship is an obvious example of a symphonic re-
lation, interpersonal contact is a similarly common epibolic example. Contact
is inherently symmetric, and may be instigated by either party to the relation;
it is thus natural to model it by letting A = V , and cjk = (j, k). Interestingly,
it may be appropriate to model the same underlying relationship as epibolic or
unilateral, depending on what is assumed to drive the behaviors of the partici-
pants. For instance, an advising relation generally involves a two-way exchange
of information, even if one party is the initiator of the interaction. If this ex-
change per se were conjectured to drive agent behavior (and not the properties
of the unilateral advice-seeking edge), then it would be more appropriate to treat
the interaction as undirected and epibolic rather than directed and unilateral.
(Use of model comparison techniques to empirically disambiguate such cases
is in principle possible, although this will not be treated here.) While contact
and advice are directly interpersonal, one can naturally find epibolic relations
in other contexts. Returning to our earlier transportation example, we could
for instance consider a scenario in which two authorities (e.g., governments of
neighboring city-states) have the capacity to build road segments within the
same area (e.g., neutrally held territory adjacent to both). Since a road seg-
ment exists if implemented by either party (in the absence of malfeasance), the
road network as a whole is an epibolic relation. The agents in this case are the
two government authorities, and the control list for all edges is simply these two
agents in lexical order.

The meaning of the decision Pijk = 1 in the epibolic case is straightforwardly
implied by the above examples: “the ith controlling party of the j, k edge chooses
to implement the edge, regardless of whether the other party concurs.” This is
obviously close to the unilateral case, save in that neither party can prevent the
edge from being established by the other. As before, it should be stressed that
this is independent of the valance of Y , and could reflect either tacit or explicit
sub-relational interaction.
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3.1.3 General Multilateral Edge Control

Although most studied relations fall into the unilateral or bilateral cases, there
is in principle no limit to the number of agents who may be involved in edge
creation. For instance, ? discuss games in which a committee of designers
attempts to negotiate the structure of an organization; although their case is
concerned with dynamics (i.e., plans for changing an organization over time),
similar interactions may occur in negotiations over structure per se. Models
for hypergraphs (which can be represented two-mode bipartite graphs, with
appropriate restrictions on Yn) may also suggest a more general multilateral
control structure.

In such cases, the number of possible resolution mechanisms is obviously
quite large, and we do not attempt to enumerate them here. Symphonic and
epibolic relations generalize naturally to the general context, with respective R
functions r(P )jk =

∏ℓ
i=1 Pijk and r(P )jk = 1−

∏ℓ
i=1 (1 − Pijk). Other potential

rules include thresholding mechanisms (i.e., some critical number k of controlling
parties must choose an edge to activate it), which takes the “democratic” process
of majority rule as a special case. As before, choice of r is a substantive modeling
decision which indirectly determines the behavioral meaning of the prosphoric
array, and as such should be guided by prior knowledge regarding the social
system in question.

3.2 Edge Updating Events, and the Decision Model

Having constructed a framework for representing agent decisions regarding edges
within a network, and having discussed the mechanisms by which those deci-
sions are transformed into manifest ties, we are now in a position to discuss
the choice process itself. Our approach is to model agents as boundedly ra-
tional decision makers, who myopically adjust their relationships so as to (on
average) increase their utilities for the resulting manifest network. Adjustments
are assumed to occur episodically in continuous time, such that adjustment op-
portunities (though not realized adjustments) are independent of the current
network state. As we will subsequently show, this process (for certain fami-
lies of utility functions) leads to cross-sectional behavior which can be directly
parameterized in terms of individual utility functions.

3.2.1 Edge Updating Process

As noted above, we assume that relationships within Y are persistent (as op-
posed to instantaneous; see ? for a discussion), with changes occurring in con-
tinuous time. Changes occur when provoked by agents’ decisions (within P ), as
determined by the resolution function, r. As cognitively bounded individuals,
we presume that agents are not capable of evaluating all controlled edges simul-
taneously, nor at all times. Rather, we presume that an unobserved saliency-
governing process episodically leads each agent to evaluate his or her decision
regarding a particular edge, at which time he or she revisits the decision within
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the current structural context (as described below). Should this evaluation lead
to a state change, P (and, if necessary, Y ) are immediately updated, and all
decisions are then fixed until the next opportunity arises.

We here refer to such “opportunities” as edge updating events, and the pro-
cess which generates them as an edge updating process. Formally, we define
this process, X(1),X(2), . . ., as a sequence of random (j, k, l, t) tuples, where
a(X(i)) = j is the updating agent, es(X

(i)) = k is the sender of the hypotheti-
cal edge being updated, er(X

(i)) = l is the receiver of the hypothetical edge, and
τ(X(i)) = t is the time at which the updating event occurs. Like P , we consider
X to be fully latent, and we specify only that it satisfy the following two con-
ditions. First, we require X to be independent of P (and hence of Y ) – change
opportunities (but not realized changes) do not depend on the state of the net-
work. Second, we require that all elements of P are updated at least occasion-
ally, in the limited sense that

∑

x:τ(x)<t I (a (x) = i, es(x) = j, er(x) = k) → ∞

as t → ∞ a.s. for all {j, k} (directed case (j, k)) in E∗(Yn) and all i ∈ cjk.
Thus, in the limit, all edges will be updated infinitely many times, though this
process need not happen in any particular order. While very weak, we will see
that these conditions are sufficient to yield the desired result.

3.2.2 Stochastic Choice Mechanism

When an edge updating event X(i) = (j, k, l, t) occurs, the evaluating agent
a = cklj revisits his or her decision regarding the state of the j, k edge (i.e., the
value of Pjkl). Let P (i−1) be the current state of the prosphoric array; a must

then choose between P (i) =
(

P (i−1)
)+

jkl
and P (i) =

(

P (i−1)
)−

jkl
. We here assume

that a’s preferences can be expressed by a finite utility function on the states of
Y , i.e., ua : Yn 7→ R. Given this, a myopically chooses the state of Pjkl based on
its immediate relational consequences. Within such a setting, a frequently used
behavioral choice model is the logistic choice model (McFadden, 1973), so-called
because of its functional form. Specifically, the logistic choice model predicts
that the probability of choosing a given option (versus a single alternative) is
equal to the inverse logit of the difference in utilities between the alternatives.
When one option is decisively superior, the model converges towards the rational
actor solution (strict utility maximization), alternately converging towards equal
probability of selection at the indifference point; between these two extremes,
the decision maker is predicted to favor the superior option, with the degree of
favoring increasing with the difference in utilities. Applying this framework to
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a prosphoric choice in the above case gives us:

Pr

(

P
(i)
jkl =

(

p(i−1)
)+

jkl

∣

∣

∣

∣

(

P (i−1)
)c

jkl
=

(

p(i−1)
)c

jkl
, ua

)

=
exp

[

ua

(

r
(

(

p(i−1)
)+

jkl

))]

exp
[

ua

(

r
(

(

p(i−1)
)+

jkl

))]

+ exp
[

ua

(

r
(

(

p(i−1)
)−

jkl

))]

(9)

= logit−1

[

ua

(

r

(

(

p(i−1)
)+

jkl

))

− ua

(

r

(

(

p(i−1)
)−

jkl

))]

. (10)

Thus, a’s choice is seen to be governed by the difference in his or her utilities
for the states of Y resulting from his or her decision, as desired.

One important special case of the above occurs when there exists some po-
tential function, ρ, such that ρ

(

y+
kl

)

−ρ
(

y−

kl

)

= ua

(

y+
kl

)

−ua

(

y−

kl

)

for all a ∈ ckl

and all {k, l} (or (k, l) in the directed case). In such a setting, Equation 10
reduces to

Pr

(

P
(i)
jkl =

(

p(i−1)
)+

jkl

∣

∣

∣

∣

(

P (i−1)
)c

jkl
=

(

p(i−1)
)c

jkl
, ρ

)

=

logit−1

[

ρ

(

r

(

(

p(i−1)
)+

jkl

))

− ρ

(

r

(

(

p(i−1)
)−

jkl

))], (11)

and all decisions depend only on the difference in potentials (which is not agent-
specific). Considered in game theoretic terms, the existence of such a ρ identifies
the corresponding behavioral model as a potential game (Monderer and Shapley,
1996), and we likewise say that ρ is a potential for the tuple (A, ℓ, c,Yn).

3.3 Equilibrium Distribution of Relations Under the Be-

havioral Model

Given the above, we are now ready to state our primary result:

Theorem 1. Let Y be the adjacency structure arising from the behavioral model
specified by (Yn, A, ℓ, c, r, u) under edge updating process X, and let Y [t] be the
state of Y at time t. If ρ is a potential for (A, ℓ, c,Yn), and X is such that

1. X is independent of P ; and

2.
∑

x:τ(x)<t I (a (x) = i, es(x) = j, er(x) = k) → ∞ as t → ∞ a.s. for all

{j, k} (directed case (j, k)) in E∗(Yn) and all i ∈ cjk,

then Y [t] converges in distribution to Pr
(

Y [t] = y
)

= |{p : r(p) = y}| exp[ρ(y))
P

p′∈Pn
exp[r(p′)]

on support Yn as t → ∞.

Proof. We begin by noting that the independence of X and P implies that both
P and Y are embedded Markov chains; without loss of generality, then, we may
restrict our attention to the sequences Y (1), . . . , Y (i), . . . and P (1), . . . , P (i), . . .
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arising from the set of realized edge updating events x(1), . . . , x(i), . . .. Since ρ is
a potential for (A, ℓ, c,Yn), we have from Equation 11 that

Pr
(

P
(i)
jkl =

(

p(i−1)
)+

jkl

∣

∣

∣

(

P (i−1)
)c

jkl
=

(

p(i−1)
)c

jkl
, ρ

)

= logit−1
[

ρ
(

r
(

(

p(i−1)
)+

jkl

))

− ρ
(

r
(

(

p(i−1)
)−

jkl

))]

(where j = a(xi), k = es(xi), and l = er(xi)). From Equation 8, however, this is
exactly equal to the conditional probability that Pjkl = pkjkl for a multivariate
ERG process on P with potential ρ(r(P )). Now, consider the sequential edge
updating process formed by the realized updating events. By assumption, x(i)

is independent of P . Further,
∑

x:τ(x)<t I (a (x) = i, es(x) = j, er(x) = k) → ∞

as t → ∞ a.s. clearly implies that
∑∞

i=1 I (a (x) = i, es(x) = j, er(x) = k) → ∞
a.s. as well. This implies that the sequence P (0), P (1), . . . satisfies the conditions
of Proposition 1, and hence P (0), P (1), . . . , P (i) approaches Pr

(

P (i) = p |r, ρ
)

=

exp [ρ (r (p))] /
[

∑

p′∈Pn

exp [ρ (r (p′))]
]

in distribution as i → ∞. Since the sum-

mation condition on x(i) also implies that the total number of updating events
must approach infinity almost surely as t → ∞, this limit must hold in t as well.

It now remains to find the limiting distribution of Y (i). We proceed by first
integrating over p, and then substituting from our previous results:

Pr
(

Y (i) = y |ρ
)

=
∑

p∈Pn

Pr
(

Y (i) = y
∣

∣

∣
P (i) = p, ρ

)

Pr
(

P (i) = p |r, ρ
)

(12)

=
∑

p:r(p)=y

Pr
(

P (i) = p |r, ρ
)

(13)

=
∑

p:r(p)=y

exp [ρ (r (p))]
∑

p′∈Pn

exp [ρ (r (p′))]
(14)

= ‖{p : r(p) = y}‖
exp [ρ (y)]

∑

p′∈Pn

exp [ρ (r (p′))]
. (15)

Since this limit also holds in t, the limiting distribution of Y [t] must be as
derived.

Theorem 1 provides us with an expression for the long-run cross-sectional
behavior of Y , in the sense that a cross-sectional “snapshot” of Y taken at
a random time will (in the large-t limit) have the specified distribution. This
suggests, in practice, that models for cross-sectional data drawn from sources for
which the above assumptions are reasonable may be (in some cases, at least) be
given a behavioral interpretation. We now illustrate the use of these principles
with a simple example, specifically involving advice-seeking behavior in a high
tech firm.

4 Example: Advice-Seeking Among Managers

We demonstrate the utility of the behavioral framework via an illustrative analy-
sis of a classic data set of Krackhardt (1987), consisting of self-reported advice-
seeking behavior among 21 managers in a high-tech firm. In addition to the
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Figure 1: Krackhardt Advice Network Sociogram, Scaling and Shading by De-
gree

advice network, the data set includes attributions of friendship, as well as re-
porting ties (i.e., i reports to j as part of his or her regular duties within the
firm). The networks here are cross-sectional, reflecting a snapshot of the social
system at one point in time (see Figure 1). Nevertheless, it seems reasonable
to presume that the observed ties arise from an underlying dynamic process, by
which managers within the firm decide from whom they will seek advice given
both the broader relational context (e.g., personal relationships and the formal
organizational hierarchy) and the choices made by others.

To model the Krackhardt data, we begin by assuming that advice-seeking is
a unilateral relation for which each individual chooses his or her outgoing edges.
This leads immediately to a very simplified equilibrium distribution: since the
prosphoric array in this case is exactly equivalent to the manifest relation, the
equilibrium arising from Theorem 1 (assuming the relevant conditions are met)
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Deviance Model df AIC Rank
Edges 578.43 1 580.43 7
Edges+Sender 441.12 21 483.12 4
Edges+Covar 548.15 3 554.15 5
Edges+Recip 577.79 2 581.79 8
Edges+Sender+Covar 385.88 23 431.88 2
Edges+Sender+Recip 405.38 22 449.38 3
Edges+Covar+Recip 547.82 4 555.82 6
Edges+Sender+Covar+Recip 378.95 24 426.95 1

Table 1: Model Selection Statistics for Krackhardt Advice Network, Indepen-
dent Dyad Models

is simply a standard ERG with potential ρ. Assuming that the observed data
is truly a snapshot from the long-run behavior of such a process, we may then
estimate ρ (and hence the actor utilities, up an affine transformation) by existing
methods.

To that end, we start by fitting models for standard independent dyad effects,
interpreting them for our purposes in choice-theoretic terms. Table 1 shows
basic goodness-of-fit information for models based on various combinations of
edge formation preferences (homogeneous or inhomogeneous); edgewise covari-
ate preferences (i.e., differential payoffs for seeking advice from friends and/or
supervisors); and reciprocity preferences (i.e., differential payoffs for seeking ad-
vice from those who currently come to you for advice). As the table indicates,
the favored model under the AIC is that including all effects (with heteroge-
neous sending preferences). Thus, we find evidence within the data not only for
interpersonal differences in advice-seeking propensity, but also for attention to
relational context and reciprocity in seeking out others for professional advice.

Next, we consider effects involving dependence (Table 1). In the present
case, we fit models including two types of terms: differential preferences for
edges which would induce three-cycles (i.e., seeking advice from those seeking
advice from your current advisees); and differential preferences for edges which
would produce transitive completions (i.e., seeking advice from your current
advisors’ advisors). Here too, the joint model wins out, although its goodness-
of-fit versus the next best alternative (the same model without the transitive
triad term) is only marginally superior. Thus, the data suggests that actors
within this network are attentive to broader network features, above and beyond
reciprocity and covariate effects.

To interpret the effects themselves, we now consider the estimated effects
within the AIC-favored model (Table 3). Both the signs and magnitudes of
the estimated effects are intuitive. Advice-seeking is generally aversive for most
managers, although less so when seeking advice from friends. Seeking advice
from managers is generally preferred (the total payoff is typically positive),
reflecting the standard norm that one should gain input from one’s supervisor
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Deviance Model df AIC Rank
Edges+Sender+Covar+Recip 378.95 24 426.95 4
Edges+Sender+Covar+Recip+CycTriple 361.61 25 411.61 2
Edges+Sender+Covar+Recip+TransTriple 368.81 25 418.81 3
Edges+Sender+Covar+Recip+CycTriple+TransTriple 358.73 26 410.73 1

Table 2: Model Selection Statistics for Krackhardt Advice Network, Dependent Dyad Models

17



0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0.
0

0.
1

0.
2

0.
3

0.
4

in degree

pr
op

or
tio

n 
of

 n
od

es
0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

out degree

pr
op

or
tio

n 
of

 n
od

es

003 012 102 021U 111D 030T 201 120U 210 300

0.
00

0.
05

0.
10

0.
15

triad census

pr
op

or
tio

n 
of

 tr
ia

ds

1 2 3 4 5 6 7 NR

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

minimum geodesic distance

pr
op

or
tio

n 
of

 d
ya

ds

Goodness−of−fit diagnostics

Figure 2: Model Adequacy Checks for Krackhardt Advice Network, AIC-
Selected Model

regarding work-related matters. Reciprocal relationships reduce the cost of
advice-seeking, but cyclic triads do not; this can be most easily explained by
the notion that such activity takes place within a status hierarchy, and those
significantly below one (one’s advisees’ advisees) are poor sources of information.
Consistent with this intuition, we find that seeking advice from those to whom
one has two-paths (one’s advisors’ advisors) is a higher-payoff activity. The data
thus suggests not only attentiveness to triadic properties, therefore, but more
generally a tendency towards status-seeking behavior within the network.

As a final note, it is also worth asking how well these simple factors do at
accounting for broader network structure. To this end, Figure 2 shows model
adequacy checks based on degree, triad census, and the distribution of geodesic
distances within the graph. On the whole, the fitted model does fairly well: most
simulated statistics cover the observed data, including those (like geodesics)
based on global features not contained within the model. The relative success
of these local properties in capturing other aspects of the data suggests that it
is not necessary to posit that managers consider global network properties when
making advice-seeking decisions. Of course, this does not rule out the possibility
that such information is used in more subtle ways, nor that some other process
than the one described here is at work. Nevertheless, the data does not suggest
that such a thing is necessary to explain the bulk of the observed structure,
while the simple behavioral model appears adequate to account for much of
what is observed.
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Effect θ̂ s.e. Pr(> |Z|) Effect θ̂ s.e. Pr(> |Z|)
Edges −1.022 0.137 0.0000 ∗ ∗ ∗ Sender14 −1.513 0.231 0.0000 ∗ ∗ ∗

Sender2 −2.039 0.637 0.0014 ∗∗ Sender15 16.605 0.336 0.0000 ∗ ∗ ∗
Sender3 0.690 0.466 0.1382 Sender16 −1.472 0.232 0.0000 ∗ ∗ ∗
Sender4 −0.049 0.441 0.9112 Sender17 −2.548 0.197 0.0000 ∗ ∗ ∗
Sender5 0.355 0.495 0.4734 Sender18 1.383 0.214 0.0000 ∗ ∗ ∗

Sender6 −4.654 1.540 0.0025 ∗∗ Sender19 −0.601 0.190 0.0016 ∗∗
Sender7 −0.108 0.375 0.7726 Sender20 0.136 0.161 0.3986
Sender8 −0.449 0.479 0.3486 Sender21 0.105 0.210 0.6157
Sender9 0.393 0.496 0.4281 Reciprocity 0.885 0.081 0.0000 ∗ ∗ ∗

Sender10 0.023 0.555 0.9662 Edgecov (Reporting) 5.178 0.947 0.0000 ∗ ∗ ∗
Sender11 −2.864 0.721 0.0001 ∗ ∗ ∗ Edgecov (Friendship) 1.642 0.132 0.0000 ∗ ∗ ∗
Sender12 −2.736 0.331 0.0000 ∗ ∗ ∗ CycTriple −0.216 0.013 0.0000 ∗ ∗ ∗
Sender13 −0.986 0.194 0.0000 ∗ ∗ ∗ TransTriple 0.090 0.003 0.0000 ∗ ∗ ∗

Null Dev 582.24; Res Dev 358.73 on 394 df

Table 3: Parameter Estimates for Krackhardt Advice Network, AIC-Selected Model
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5 Conclusion

In this paper, we have provided a basic micro-foundation for cross-sectional net-
work models, based on a stochastic choice process. While not applicable in all
circumstances, behaviorally plausible conditions do exist for which this process
will give rise to well-defined equilibrium behavior, and for which said equilibrium
can be expressed in terms of individual utilities. The presence of such a rela-
tionship allows for estimation and comparison of models for agent preferences
from cross-sectional data, without explicit knowledge of the underlying dynamic
process. It is hoped that the results shown here will lead to further investiga-
tion of the relationship between choice processes and social networks, and to a
clearer understanding of what can (and cannot) be inferred from cross-sectional
network data.
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