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The Basic Issue

◮ ERG-parameterized models represent a major advance in the study of social
(and other) networks...

⊲ Fully generic representation for models on finite graph sets

⊲ (Relatively) well-developed inferential theory

⊲ Increasingly well-developed theory of model parameterization (though much

more is needed!)

◮ ...But no general way to perform exact simulation

⊲ “Easy” special cases exist (e.g., N, p), but direct methods exponentially hard in
general

⊲ So far, exclusive reliance on approximate simulation using MCMC; can work well,

but quality hard to ensure

◮ Since almost all ERG applications involve simulation, this is a major issue!
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Notational Note

◮ Assume G = (V, E) to be the graph formed by edge set E on vertex set V

⊲ Often, will take |V | = n to be fixed, and assume elements of V to be uniquely
identified

⊲ E may be random, in which case G = (V, E) is a random graph

⊲ Adjacency matrix Y ∈ {0, 1}N×N (may also be random); for G random, will use
notation y for adjacency matrix of realization g of G

⊲ Graph/adjacency matrix sets denoted by G,Y; set of all graphs/adjacency

matrices of order n denoted Gn,Yn

◮ Additional matrix notation

⊲ y+
ij ,y−

ij denote matrix y with i, j cell set to 1 or 0 (respectively)

⊲ yc
ij denotes all cells of matrix y other than yij

⊲ Can be applied to random matrices, as well
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Reminder: Exponential
Families for Random Graphs

◮ Let G be a random graph w/countable support G, represented through its
random adjacency matrix Y on corresponding support Y. The pmf of Y is
then given in ERG form by

Pr(Y = y|t, θ) =
exp

(

θT t(y)
)

∑

y′∈Y exp (θT t(y′))
IY(y) (1)

◮ θT t: linear predictor

⊲ t : Y → R
m: vector of sufficient statistics

⊲ θ ∈ R
m: vector of parameters

⊲
∑

y′∈Y exp
(

θT t(y′)
)

: normalizing factor (aka partition function, Z)

◮ Intuition: ERG places more/less weight on structures with certain features,
as determined by t and θ

⊲ Model is complete for pmfs on G, few constraints on t
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Approximate ERG Simulation
via the Gibbs Sampler

◮ Direct simulation is infeasible due to incomputable normalizing factor
◮ Approximate solution: single update Gibbs sampler (Snijders, 2002))

⊲ Define ∆ij(y) = t
“

y+
ij

”

− t
“

y−

ij

”

; it follows that

Pr
`

Yij = 1
˛

˛yc
ij , t, θ

´

=
1

1 + exp (−θT ∆ij (y))
(2)

= logit−1
“

θT ∆ij (y)
”

(3)

⊲ Let sequence Y (1), Y (2), . . . be formed by identifying a vertex pair {i, j} (directed case:

(i, j)) at each step, and letting Y (i) =
`

Y (i−1)
´+

ij
with probability given by Equation 3 and

Y (i) =
`

Y (i−1)
´−

ij
otherwise

⊲ Under mild regularity conditions, Y (1), Y (2), . . . forms an ergodic Markov chain with

equilibrium pmf ERG(θ, t,Y)

◮ Better MCMC algorithms exist, but most are similar – this one will be of use
to us later
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Avoiding Approximation:
“Exact” Sampling Schemes

◮ General goal: obtaining draws which are “exactly” iid with a given

pmf/pdf

⊲ Obviously, this only works up to the limits of one’s numerical capabilities (and

often approximate uniform RNG); thus some call this “perfect” rather than “exact’

sampling

◮ Many standard methods for simple problems (e.g., inverse CDF,

rejection), but performance unacceptable on most complex problems

◮ Ingenious scheme from Propp and Wilson (1996) called “Coupling

From The Past” (CFTP)

⊲ Builds on MCMC in a general way

⊲ Applicable to complex, high-dimensional problems
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Coupling from the Past

◮ The scheme, in a nutshell:
⊲ Start with a Markov chain Y on support S w/equilibrium distribution f

⊲ Designate some (arbitrary) point as iteration 0 (w/state Y (0))

⊲ Consider some (also arbitrary) iteration −i < 0, and define the function X0(y) to
be the (random) state of Y (0) in the evolution of Y (−i), Y (−i+1), . . . , Y (0), with
initial condition Y (−i) = y

⊲ If the above evolution has common X0(y) = y(0) for all y ∈ S (holding constant
the “random component,” aka coupling), then y(0) would result from any
(infinite) history of Y prior to −i

⊲ Since 0 was chosen independently of Y , y(0) is a random draw from an infinite
realization of Y , and hence from f

⊲ If this fails, we can go further into the past and try again (keeping the same

coupling as before); if Y is ergodic, this will work a.s. (eventually)
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Coalescence Detection

◮ Sounds too good to be true! What’s the catch?

◮ The problem is coalescence detection: how do we know when X0(y) would
have converged over all y ∈ S?

⊲ Could run forward from all elements in S, but this is worse than brute force!

⊲ Need a clever way to detect coalescence while simulating only a small number of chains

◮ Conventional solution: try to find a monotone chain

⊲ Let ≤ be a partial order on S, and let sh, sl ∈ S be unique maximum, minimum elements

⊲ Define a Markov chain, Y , on S w/transition function φ based on random variable U such

that s ≤ s′ implies φ(s|U = u) ≤ φ(s′|U = u); then Y is said to be a monotone chain on S

◮ If Y is monotone, then we need only check that X0(sh) = X0(sl), since any
other state will be “sandwiched” between the respective chains

⊲ Remember that we are holding U constant here!
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Back to ERGs

◮ This is lovely, but of little direct use to us

⊲ Typical ERG chains aren’t monotone, and none have been found which are usable

⋄ I came up with one (the “digit value sampler”), but it’s worse than brute force....

◮ Alternate idea: create two “bounding chains” which stochastically
dominate/are dominated by a “target chain” on Y (with respect to some
partial order)

⊲ Target chain is an MCMC with desired equilibrium

⊲ “Upper” chain dominates target, “lower” chain is dominated by target (to which both are
coupled)

⊲ Upper and lower chains started on maximum/minimum elements of Y; if they meet, then
they necessarily “sandwich” all past histories of the target (and hence the target has
coalesced)

⋄ Similar to dominated CFTP (Kendall, 1997; Kendall and Møller, 2000) (aka “Coupling Into
and From The Past”), but we don’t use the bounding chains for coupling in the same way

◮ Of course, we now need a partial order, and a bounding process....
Carter T. Butts – p. 9/21



The Subgraph Relation

◮ Given graphs G, H, G is a subgraph of

H (denoted G ⊆ H) if V (G) ⊆ V (H)

and E(G) ⊆ E(H)

⊲ If y and y′ are the adjacency matrices of G

and H, G ⊆ H implies yij ≤ y′
ij for all i, j

⊲ We use y ⊆ y′ to denote this condition

◮ ⊆ forms a partial order on any Y

⊲ For Yn, we also have unique maximum

element Kn (complete graph) and minimum

element Nn (null graph)
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Bounding Processes

◮ Let Y be a single-update Gibbs sampler w/equilibrium distribution

ERG(θ, t,Yn); we want processes (L, U) such that L(i) ⊆ Y (i) ⊆ U (i)

for all i ≥ 0 and for all realizations of Y

⊲ Define change score functions ∆L and ∆U on θ and graph set A as
follows:

∆L
ijk (A, θ) =







maxy∈A ∆ijk(y) θk ≤ 0

miny∈A ∆ijk(y) θk > 0
(4)

∆U
ijk (A, θ) =







miny∈A ∆ijk(y) θk ≤ 0

maxy∈A ∆ijk(y) θk > 0
(5)

⋄ Intuition: ∆L
ij biased towards “downward” transitions, ∆U

ij biased towards “upward”

transitions

Carter T. Butts – p. 11/21



Bounding Processes, Cont.

◮ Assume that, for some given i, L(i) ⊆ Y (i) ⊆ U (i), and let
B(i) = {y ∈ Yn : L(i) ⊆ y ⊆ U (i)} be the set of adjacency matrices bounded
by U and L at i

⊲ Assume that edge states determined by u(0), u(1), . . ., w/u(i) iid uniform on [0, 1]

⊲ Bounding processes then evolve by (for some choice of j, k to update)

L
(i+1) =

8

>

<

>

:

“

L(i)
”+

jk
u(i) ≤ logit−1

“

θT ∆L
jk

“

B(i), θ
””

“

L(i)
”−

jk
u(i) > logit−1

“

θT ∆L
jk

“

B(i), θ
”” (6)

U
(i+1) =

8

>

<

>

:

“

U (i)
”+

jk
u(i) ≤ logit−1

“

θT ∆U
jk

“

B(i), θ
””

“

U (i)
”−

jk
u(i) > logit−1

“

θT ∆U
jk

“

B(i), θ
”” . (7)

⋄ Intuition: Pr
“

U
(i+1)
jk

= 1
”

≥ Pr
“

Y
(i+1)
jk

= 1
”

≥ Pr
“

L
(i+1)
jk

= 1
”

, by construction of

∆U , ∆L
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Bounding Processes, Cont.

◮ We can now put the pieces together:

⊲ If, at iteration i, L(i) ⊆ Y (i) ⊆ U (i), then L(i+1) ⊆ Y (i+1) ⊆ U (i+1)

⋄ True because, for any choice of edge to update (across all three processes), an edge is
added to Y only if it is also added to U , and an edge is removed from Y only if it is also
removed from L

⋄ By construction of ∆U , ∆L, this holds regardless of the current state of Y

⊲ Since Nn ⊆ Y (i) ⊆ Kn, we can guarantee the above for some fixed
iteration 0 by setting L(0) = Nn, U (0) = Kn; then, by induction, the
condition holds for all i ≥ 0

⊲ Let us assume that, at some iteration i > 0, L(i) = U (i). Then clearly
L(i) = Y (i) = U (i), regardless of Y (0); this implies that Y has coalesced

⋄ Moreover, this will occur in finite expected time if θT ∆ (and hence θT ∆U , θT ∆L) is

finite

Carter T. Butts – p. 13/21



Perfect Sampling for ERGs

◮ Given the bounding processes, our approach is now straightforward:

1. Choose iteration −i, set L−i = Nn, U (i) = Kn

2. Evolve U, L forward until coalescence detected, or 0 reached

3. If 0 reached, let i := −2i (or the like), and start over (keeping the same values of
u and edge update choices for iterations −i, . . . , 0)

4. Otherwise, set Y (−j) := L(−j) (for coalescence point −j) and simulate Y

forward until iteration 0

5. Return Y (0), which is distributed ERG(θ, t,Yn)

◮ “Geometric backing-off” based on binary search argument

(Propp and Wilson, 1996)

◮ Convergence time no faster than mixing speed of Y (alas), and can

be slower

⊲ Takes at least N2 steps, but this is better than 2N2

....
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Changescore Bound
Computation

◮ Wait a minute – what about computation for ∆U and ∆L?

⊲ They depend upon B(i) = {y ∈ Yn : L(i) ⊆ y ⊆ U(i)}, which is equal to Yn for at least
one iteration

⊲ If direct computation were feasible, we wouldn’t need this algorithm in the first place!

◮ More bounding arguments:

⊲ Good: assume t such that ti (Y ) ≤ ti (Y ′) for all Y ⊆ Y ′ (i.e., the elements of t are weakly

monotone increasing in edge addition). Then max
y∈B(i) ∆jk(y) ≤ t

“

U+
jk

”

− t
“

L−

jk

”

, and

min
y∈B(i) ∆jk(y) ≥ 0

⊲ Better: assume t such that δ is weakly monotone increasing in edge addition. Then

max
y∈B(i) ∆jk(y) ≤ t

“

U+
jk

”

− t
“

U−

jk

”

and min
y∈B(i) ∆jk(y) ≥ t

“

L+
jk

”

− t
“

L−

jk

”

⋄ This is true for all subgraph census statistics, so e.g. everything arising from
Hammersley-Clifford (Besag, 1974) (including curved families defined thereon) is
covered...
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Aside: Subgraph Census
Bounds

◮ Why do these bounds work for

all subgraph census statistics?

⊲ Let t count copies of H, and let Hij

be the set of “edge-missing
preconditions” for H (i.e.,
{H ′ : {H ′ ∪ (i, j)} ≃ H}

⊲ Clearly, ∆ij(y) = |{Hij ⊆ G}|, for
G having adjacency matrix y−

ij

⊲ Since adding non-ij edges to y

cannot decrease |Hij |, it follows

that ∆ij(y) ≤ ∆ij(y
′) for all y ⊆ y′
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Numerical Example: Two-star
and Triangle Models
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Numerical Example, Cont.
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Numerical Example, Cont.
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Summary

◮ Exact/perfect sampling for ERGs is feasible in at least some cases

◮ Basic approach: modified CFTP

⊲ Start with single-edge update Gibbs sampler

⊲ Detect coalescence via coupled bounding processes that “sandwich”
Gibbs states

⊲ Changescores for bounding processes can be themselves bounded

using subgraph relations

◮ Algorithm can be slow, but does work

⊲ Has trouble when bounds are loose, or when underlying sampler mixes
poorly

⊲ On bright side, you know when it’s not working (unlike MCMC)
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Open Problems

◮ Tighter linear predictor bounds

⊲ Per-element bounds are best possible (for subgraph census case, at least), but
bounds on the linear predictor can be much tighter (big problem for curved
models)

⊲ Have gotten better results with pre-computation for degree, but very expensive

(one-time O(N4) cost)

◮ Escape from the single-update Gibbs

⊲ Not clear that one can do much else, but worth further thought

⊲ Can something akin to TNT be done by looking at edge states which

unequivocally present or absent (using the bounding chains)?

◮ More exotic algorithms

⊲ Is there another way of doing this? I don’t know of anything substantially faster

than CFTP, but that doesn’t mean it’s not out there....
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