A Perfect Sampling Method for Exponential Random Graph Models

Carter T. Butts
Department of Sociology and
Institute for Mathematical Behavioral Sciences
University of California, Irvine
buttsc@uci.edu

This work was supported by ONR award N00014-08-1-1015.
The Basic Issue

- ERG-parameterized models represent a major advance in the study of social (and other) networks...
 - Fully generic representation for models on finite graph sets
 - (Relatively) well-developed inferential theory
 - Increasingly well-developed theory of model parameterization (though much more is needed!)

- But no general way to perform exact simulation
 - “Easy” special cases exist (e.g., N, p), but direct methods exponentially hard in general
 - So far, exclusive reliance on approximate simulation using MCMC; can work well, but quality hard to ensure

- Since almost all ERG applications involve simulation, this is a major issue!
Assume $G = (V, E)$ to be the graph formed by edge set E on vertex set V.

- Often, will take $|V| = n$ to be fixed, and assume elements of V to be uniquely identified.
- E may be random, in which case $G = (V, E)$ is a random graph.
- Adjacency matrix $Y \in \{0, 1\}^{N \times N}$ (may also be random); for G random, will use notation y for adjacency matrix of realization g of G.
- Graph/adjacency matrix sets denoted by \mathcal{G}, \mathcal{Y}; set of all graphs/adjacency matrices of order n denoted $\mathcal{G}_n, \mathcal{Y}_n$.

Additional matrix notation:
- y_{ij}^+, y_{ij}^- denote matrix y with i, j cell set to 1 or 0 (respectively).
- y_{ij}^c denotes all cells of matrix y other than y_{ij}.
- Can be applied to random matrices, as well.
Reminder: Exponential Families for Random Graphs

Let G be a random graph w/countable support \mathcal{G}, represented through its random adjacency matrix Y on corresponding support \mathcal{Y}. The pmf of Y is then given in ERG form by

$$
\Pr(Y = y | t, \theta) = \frac{\exp(\theta^T t(y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^T t(y'))} I_{\mathcal{Y}}(y) \tag{1}
$$

- $\theta^T t$: linear predictor
 - $t : \mathcal{Y} \to \mathbb{R}^m$: vector of sufficient statistics
 - $\theta \in \mathbb{R}^m$: vector of parameters
 - $\sum_{y' \in \mathcal{Y}} \exp(\theta^T t(y'))$: normalizing factor (aka partition function, Z)

- Intuition: ERG places more/less weight on structures with certain features, as determined by t and θ
 - Model is complete for pmfs on \mathcal{G}, few constraints on t
Approximate ERG Simulation via the Gibbs Sampler

- Direct simulation is infeasible due to incomputable normalizing factor
- Approximate solution: single update Gibbs sampler (Snijders, 2002)
 - Define $\Delta_{ij}(y) = t(y_{ij}^+) - t(y_{ij}^-)$; it follows that
 \[
 \Pr(Y_{ij} = 1 \mid y_{ij}^c, t, \theta) = \frac{1}{1 + \exp(-\theta^T \Delta_{ij}(y))} \quad (2)
 \]
 \[
 = \logit^{-1}(\theta^T \Delta_{ij}(y)) \quad (3)
 \]
 - Let sequence $Y^{(1)}, Y^{(2)}, \ldots$ be formed by identifying a vertex pair $\{i, j\}$ (directed case: (i, j)) at each step, and letting $Y^{(i)} = (Y^{(i-1)})^+_{ij}$ with probability given by Equation 3 and $Y^{(i)} = (Y^{(i-1)})^-_{ij}$ otherwise
 - Under mild regularity conditions, $Y^{(1)}, Y^{(2)}, \ldots$ forms an ergodic Markov chain with equilibrium pmf $\text{ERG}(\theta, t, \mathcal{V})$
- Better MCMC algorithms exist, but most are similar – this one will be of use to us later
Avoiding Approximation: “Exact” Sampling Schemes

► General goal: obtaining draws which are “exactly” iid with a given pmf/pdf
 ▶ Obviously, this only works up to the limits of one’s numerical capabilities (and often approximate uniform RNG); thus some call this “perfect” rather than “exact” sampling

► Many standard methods for simple problems (e.g., inverse CDF, rejection), but performance unacceptable on most complex problems

► Ingenious scheme from Propp and Wilson (1996) called “Coupling From The Past” (CFTP)
 ▶ Builds on MCMC in a general way
 ▶ Applicable to complex, high-dimensional problems
Coupling from the Past

The scheme, in a nutshell:

- Start with a Markov chain Y on support S w/equilibrium distribution f
- Designate some (arbitrary) point as iteration 0 (w/state $Y^{(0)}$)
- Consider some (also arbitrary) iteration $-i < 0$, and define the function $X_0(y)$ to be the (random) state of $Y^{(0)}$ in the evolution of $Y^{(-i)}, Y^{(-i+1)}, \ldots, Y^{(0)}$, with initial condition $Y^{(-i)} = y$
- If the above evolution has common $X_0(y) = y^{(0)}$ for all $y \in S$ (holding constant the “random component,” aka *coupling*), then $y^{(0)}$ would result from any (infinite) history of Y prior to $-i$
- Since 0 was chosen independently of Y, $y^{(0)}$ is a random draw from an infinite realization of Y, and hence from f
- If this fails, we can go further into the past and try again (keeping the same coupling as before); if Y is ergodic, this will work a.s. (eventually)
Coalescence Detection

Sounds too good to be true! What’s the catch?

The problem is coalescence detection: how do we know when $X_0(y)$ would have converged over all $y \in S$?

- Could run forward from all elements in S, but this is worse than brute force!
- Need a clever way to detect coalescence while simulating only a small number of chains

Conventional solution: try to find a monotone chain

- Let \leq be a partial order on S, and let $s_h, s_l \in S$ be unique maximum, minimum elements
- Define a Markov chain, Y, on S w/transition function ϕ based on random variable U such that $s \leq s'$ implies $\phi(s|U = u) \leq \phi(s'|U = u)$; then Y is said to be a monotone chain on S

If Y is monotone, then we need only check that $X_0(s_h) = X_0(s_l)$, since any other state will be “sandwiched” between the respective chains

- Remember that we are holding U constant here!
Back to ERGs

This is lovely, but of little direct use to us

- Typical ERG chains aren't monotone, and none have been found which are usable
 - I came up with one (the "digit value sampler"), but it's worse than brute force....

Alternate idea: create two “bounding chains” which stochastically dominate/are dominated by a “target chain” on \mathcal{Y} (with respect to some partial order)

- Target chain is an MCMC with desired equilibrium
- “Upper” chain dominates target, “lower” chain is dominated by target (to which both are coupled)
- Upper and lower chains started on maximum/minimum elements of \mathcal{Y}; if they meet, then they necessarily “sandwich” all past histories of the target (and hence the target has coalesced)
 - Similar to dominated CFTP (Kendall, 1997; Kendall and Møller, 2000) (aka “Coupling Into and From The Past”), but we don’t use the bounding chains for coupling in the same way

Of course, we now need a partial order, and a bounding process....
The Subgraph Relation

- Given graphs G, H, G is a subgraph of H (denoted $G \subseteq H$) if $V(G) \subseteq V(H)$ and $E(G) \subseteq E(H)$

 - If y and y' are the adjacency matrices of G and H, $G \subseteq H$ implies $y_{ij} \leq y'_{ij}$ for all i, j
 - We use $y \subseteq y'$ to denote this condition

- \subseteq forms a partial order on any \mathcal{Y}

 - For \mathcal{Y}_n, we also have unique maximum element K_n (complete graph) and minimum element N_n (null graph)
Bounding Processes

► Let Y be a single-update Gibbs sampler w/equilibrium distribution $\text{ERG}(\theta, t, \mathcal{Y}_n)$; we want processes (L, U) such that $L^{(i)} \subseteq Y^{(i)} \subseteq U^{(i)}$ for all $i \geq 0$ and for all realizations of Y

▷ Define change score functions Δ^L and Δ^U on θ and graph set \mathcal{A} as follows:

\[
\Delta^L_{ijk} (\mathcal{A}, \theta) = \begin{cases}
\max_{y \in \mathcal{A}} \Delta_{ijk}(y) & \theta_k \leq 0 \\
\min_{y \in \mathcal{A}} \Delta_{ijk}(y) & \theta_k > 0
\end{cases}
\]

(4)

\[
\Delta^U_{ijk} (\mathcal{A}, \theta) = \begin{cases}
\min_{y \in \mathcal{A}} \Delta_{ijk}(y) & \theta_k \leq 0 \\
\max_{y \in \mathcal{A}} \Delta_{ijk}(y) & \theta_k > 0
\end{cases}
\]

(5)

◊ Intuition: Δ^L_{ij} biased towards “downward” transitions, Δ^U_{ij} biased towards “upward” transitions
Bounding Processes, Cont.

Assume that, for some given \(i \), \(L^{(i)} \subseteq Y^{(i)} \subseteq U^{(i)} \), and let

\[
\mathcal{B}^{(i)} = \{ y \in \mathcal{Y}_n : L^{(i)} \subseteq y \subseteq U^{(i)} \}
\]

be the set of adjacency matrices bounded by \(U \) and \(L \) at \(i \).

Assume that edge states determined by \(u^{(0)}, u^{(1)}, \ldots, w/u^{(i)} \) iid uniform on \([0, 1]\).

Bounding processes then evolve by (for some choice of \(j, k \) to update)

\[
L^{(i+1)} = \begin{cases}
(L^{(i)})^+_j & u^{(i)} \leq \text{logit}^{-1} \left(\theta^T \Delta_L^{jk} \left(\mathcal{B}^{(i)}, \theta \right) \right) \\
(L^{(i)})^-_j & u^{(i)} > \text{logit}^{-1} \left(\theta^T \Delta_L^{jk} \left(\mathcal{B}^{(i)}, \theta \right) \right)
\end{cases}
\]

(6)

\[
U^{(i+1)} = \begin{cases}
(U^{(i)})^+_j & u^{(i)} \leq \text{logit}^{-1} \left(\theta^T \Delta_U^{jk} \left(\mathcal{B}^{(i)}, \theta \right) \right) \\
(U^{(i)})^-_j & u^{(i)} > \text{logit}^{-1} \left(\theta^T \Delta_U^{jk} \left(\mathcal{B}^{(i)}, \theta \right) \right)
\end{cases}
\]

(7)

Intuition: \(\Pr \left(U^{(i+1)}_{jk} = 1 \right) \geq \Pr \left(Y^{(i+1)}_{jk} = 1 \right) \geq \Pr \left(L^{(i+1)}_{jk} = 1 \right) \), by construction of \(\Delta_U, \Delta_L \)
Bounding Processes, Cont.

- We can now put the pieces together:
 - If, at iteration i, $L^{(i)} \subseteq Y^{(i)} \subseteq U^{(i)}$, then $L^{(i+1)} \subseteq Y^{(i+1)} \subseteq U^{(i+1)}$
 - True because, for any choice of edge to update (across all three processes), an edge is added to Y only if it is also added to U, and an edge is removed from Y only if it is also removed from L
 - By construction of $\Delta U, \Delta L$, this holds regardless of the current state of Y
 - Since $N_n \subseteq Y^{(i)} \subseteq K_n$, we can guarantee the above for some fixed iteration 0 by setting $L^{(0)} = N_n, U^{(0)} = K_n$; then, by induction, the condition holds for all $i \geq 0$
 - Let us assume that, at some iteration $i > 0$, $L^{(i)} = U^{(i)}$. Then clearly $L^{(i)} = Y^{(i)} = U^{(i)}$, regardless of $Y^{(0)}$; this implies that Y has coalesced
 - Moreover, this will occur in finite expected time if $\theta^T \Delta$ (and hence $\theta^T \Delta U, \theta^T \Delta L$) is finite
Perfect Sampling for ERGs

Given the bounding processes, our approach is now straightforward:

1. Choose iteration $-i$, set $L^{-i} = N_n, U^{(i)} = K_n$
2. Evolve U, L forward until coalescence detected, or 0 reached
3. If 0 reached, let $i := -2i$ (or the like), and start over (keeping the same values of u and edge update choices for iterations $-i, \ldots, 0$)
4. Otherwise, set $Y^{(-j)} := L^{(-j)}$ (for coalescence point $-j$) and simulate Y forward until iteration 0
5. Return $Y^{(0)}$, which is distributed ERG(θ, t, \mathcal{Y}_n)

"Geometric backing-off" based on binary search argument (Propp and Wilson, 1996)

Convergence time no faster than mixing speed of Y (alas), and can be slower

- Takes at least N^2 steps, but this is better than 2^{N^2}...
Wait a minute – what about computation for Δ^U and Δ^L?

They depend upon $B^{(i)} = \{y \in Y_n : L^{(i)} \subseteq y \subseteq U^{(i)}\}$, which is equal to Y_n for at least one iteration.

If direct computation were feasible, we wouldn’t need this algorithm in the first place!

More bounding arguments:

Good: assume t such that $t_i(Y) \leq t_i(Y')$ for all $Y \subseteq Y'$ (i.e., the elements of t are weakly monotone increasing in edge addition). Then $\max_{y \in B^{(i)}} \Delta_{jk}(y) \leq t\left(U^+_{jk}\right) - t\left(L^-_{jk}\right)$, and $\min_{y \in B^{(i)}} \Delta_{jk}(y) \geq 0$.

Better: assume t such that δ is weakly monotone increasing in edge addition. Then $\max_{y \in B^{(i)}} \Delta_{jk}(y) \leq t\left(U^+_{jk}\right) - t\left(U^-_{jk}\right)$ and $\min_{y \in B^{(i)}} \Delta_{jk}(y) \geq t\left(L^+_{jk}\right) - t\left(L^-_{jk}\right)$.

This is true for all subgraph census statistics, so e.g. everything arising from Hammersley-Clifford (Besag, 1974) (including curved families defined thereon) is covered...
Aside: Subgraph Census Bounds

Why do these bounds work for all subgraph census statistics?

- Let t count copies of H, and let \mathcal{H}_{ij} be the set of “edge-missing preconditions” for H (i.e., $\{H' : \{H' \cup (i, j)\} \simeq H\}$).

- Clearly, $\Delta_{ij}(y) = |\{\mathcal{H}_{ij} \subseteq G\}|$, for G having adjacency matrix y_{ij}.

- Since adding non-ij edges to y cannot decrease $|\mathcal{H}_{ij}|$, it follows that $\Delta_{ij}(y) \leq \Delta_{ij}(y')$ for all $y \subseteq y'$.

\[\Delta = 1 \]
\[\Delta = 3 \]
\[\Delta = 4 \]
Numerical Example: Two-star and Triangle Models

Pr(Y ∈ {K, N}|θ), Two-Star Model

Log Mean Coalescence Time, Two-Star Model

Pr(Y ∈ {K, N}|θ), Triangle Model

Log Mean Coalescence Time, Triangle Model
Numerical Example, Cont.
Numerical Example, Cont.

Mean $K_{1,2}$ Count, Triangle Model

StdDev $K_{1,2}$ Count, Triangle Model

Mean K_3 Triangle Model

StdDev K_3 Count, Triangle Model
Summary

- Exact/perfect sampling for ERGs is feasible in at least some cases

- Basic approach: modified CFTP
 - Start with single-edge update Gibbs sampler
 - Detect coalescence via coupled bounding processes that “sandwich” Gibbs states
 - Changescores for bounding processes can be themselves bounded using subgraph relations

- Algorithm can be slow, but does work
 - Has trouble when bounds are loose, or when underlying sampler mixes poorly
 - On bright side, you know when it’s not working (unlike MCMC)
Open Problems

► Tighter linear predictor bounds
 ▶ Per-element bounds are best possible (for subgraph census case, at least), but bounds on the linear predictor can be much tighter (big problem for curved models)
 ▶ Have gotten better results with pre-computation for degree, but very expensive (one-time $O(N^4)$ cost)

► Escape from the single-update Gibbs
 ▶ Not clear that one can do much else, but worth further thought
 ▶ Can something akin to TNT be done by looking at edge states which unequivocally present or absent (using the bounding chains)?

► More exotic algorithms
 ▶ Is there another way of doing this? I don’t know of anything substantially faster than CFTP, but that doesn’t mean it’s not out there....
1 References

