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Statistical Models for Social Networks

Notation

A social network is defined as a set of n social “actors” and a social relationship
between each pair of actors.

v — 1 relationship from actor 7 to actor j
Y 0 otherwise

o call Y = [Yi;]nxn @ Sociomatrix
— a N = n(n — 1) binary array

e The basic problem of stochastic modeling is to specify a distribution for Y i.e.,
P(Y =y)
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A Framework for Network Modeling
Let ) be the sample space of Y e.g. {0, 1}*

Any model-class for the multivariate distribution of Y
can be in the form:

) = exp{n-9(y)}
k(n,Y)

Besag (1974), Frank and Strauss (1986)

P (Y =y

yey

e n ¢ A C R? g-vector of parameters

e g(y) g-vector of
= g(Y) are jointly sufficient for the model

e For a “saturated” model-class ¢ = || —1 e.g.2" —1

e x(m,Y) distribution normalizing constant

k(n, V) = > exp{n-g(y)}

yey
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Statistical Inference for

Base inference on the loglikelihood function,

0(n) = n-9(Yobs) — log r(n)

k(n) = > exp{n-g(z)}

all possible
graphs z
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Approximating the loglikelihood

e Suppose Y1, Yo, ..., Ymi'Kd'Pno(Y = y) for some ny.

e Using the LOLN, the difference in log-likelihoods is

() — btm) = log ")
w(n)

= logE,, (exp{(no —n)-g(Y)})

Q

l0g <=3 exp {(m — 1) (9(¥D) — gyons))}

= g(77) — g(?70)-
e Simulate Y7, Yo, ..., Y,, using a MCMC (Metropolis-Hastings) algorithm
= Snijders (2002); Handcock (2002).

e Approximate the MLE 7 = argmax,{£(n) — £(n¢)} (MC-MLE)
= Geyer and Thompson (1992)

e Given a random sample of networks from P, , we can thus approximate (and
subsequently maximize) the loglikelihood shifted by a constant.



Conditional log-odds of an edge

Notation: For a network y and a pair (i, j) of nodes,

@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)

° y,jr denotes the same network as y but with y; = 1

°y; denotes the same network as y but with y; =0
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@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)

° y,jr denotes the same network as y but with y; = 1
°y; denotes the same network as y but with y; =0
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Conditional on Y,j? = y,/C Y has only two possible states,
depending on whether Y =0 or Y = 1.
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Conditional log-odds of an edge

Notation: For a network y and a pair (i, j) of nodes,

@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)
° y,jr denotes the same network as y but with y; = 1
°y; denotes the same network as y but with y; =0

(O
Conditional on Y7 =y, Y has only two possible states,
depending on whether Y =0 or Y = 1.

Let’s calculate the ratio of the two respective probabilities.

[We'll use Py(Y = y) = exp{0'g(y)}/x(9).]
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Conditional log-odds of an edge

Notation: For a network y and a pair (i, j) of nodes,

@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)

° y,jr denotes the same network as y but with y; = 1
°y; denotes the same network as y but with y; =0

P(Ys=11Yf=y5)  exp{0'g(y;)}
P(Yj=0[Y? = ;) exp{0'g(y; )}

A lot of cancellation happened on the right hand side!
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Notation: For a network y and a pair (i, j) of nodes,

@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)

° y,jr denotes the same network as y but with y; = 1
°y; denotes the same network as y but with y; =0

PV =1y =y o )
P =ove =y — oPtPlaly) oyl
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Conditional log-odds of an edge

Notation: For a network y and a pair (i, j) of nodes,

@ y; = 0 or 1, depending on whether there is an edge
° y,.]? denotes the status of all pairs in y other than (i, j)

° y,jr denotes the same network as y but with y; = 1
°y; denotes the same network as y but with y; =0

P(Y; = 11Y¢ = y2) U
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Conditional log-odds of an edge

Notation: For a network y and a pair (i, j) of nodes,

@ A(g(y)); denotes the vector of change statistics,

A(g(y))i = 9y) — 9(yy)-
So A(g(y))j is the conditional log-odds of edge (1, /).

P(Y; = 11% = 19 t
log P(Y; = 0[Y = yf) = 0" A9(y))i

April 2006 ERGM workshop



Simulating random networks

Simulate random network(s) Y from an ERGM.

Note: There is no model, only a model class, unless we have a
specific parameter vector 9; we’ll need to fix an # somehow.
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Simulating random networks

Simulate random network(s) Y from an ERGM.

Note: There is no model, only a model class, unless we have a
specific parameter vector 9; we’ll need to fix an # somehow.

We'll discuss one way to achieve the goal, called a Metropolis
algorithm.

The Metropolis algorithm is one of a broad class of algorithms
called Markov Chain Monte Carlo (MCMC) algorithms.

April 2006 ERGM workshop



Obtaining samples via Markov Chain Monte Carlo

Whence the name MCMC?
@ Markov Chain: A sequence Y, Ys,... where the (i + 1)th
network is randomly generated based on the ith network.

@ Monte Carlo: The computational implementation of the
"randomly generated" part.

MCMC ldea for simulating networks:

Simulate a carefully designed Markov chain on the sample
space of networks for a while. When we stop it, we’ll have our
random network.

April 2006 ERGM workshop



Metropolis algorithm

@ First, select a pair of nodes at random, say (i, j).
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Metropolis algorithm

@ First, select a pair of nodes at random, say (i, j).
@ Calculate the ratio
P(Yj changes|Y; = y;)
P(Yjj does not change| Y} = y;7)
= exp{£pA(g())i}
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Metropolis algorithm

@ First, select a pair of nodes at random, say (i, j).
@ Calculate the ratio
P(Yj changes|Y; = y;)
P(Yjj does not change| Y} = y;7)
= exp{£pA(g())i}

@ Accept the change of Yj; with probability min{1,r} (i.e.,
always make the change if # > 1; otherwise, only make the
change sometimes).
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Metropolis algorithm

@ First, select a pair of nodes at random, say (i, j).
@ Calculate the ratio
P(Yj changes|Y; = y;)
P(Yjj does not change| Y} = y;7)
= exp{£pA(g())i}

@ Accept the change of Yj; with probability min{1,r} (i.e.,
always make the change if # > 1; otherwise, only make the
change sometimes).

Note: The values of g( y,f ) and g( Yi ) are never needed; only
the difference A(g(y)); matters.

April 2006 ERGM workshop



How should 6y be chosen?

@ Theoretically, the estimated value of £(6) — ¢(6p) converges
to the true value as the size of the MCMC sample
increases, regardless of the value of 6.
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to the true value as the size of the MCMC sample
increases, regardless of the value of 6.

@ However, in practice this convergence can be agonizingly
slow, especially if 8y is not chosen close to the maximizer
of the likelihood.
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How should 6y be chosen?

@ Theoretically, the estimated value of £(6) — ¢(6p) converges
to the true value as the size of the MCMC sample
increases, regardless of the value of 6.

@ However, in practice this convergence can be agonizingly
slow, especially if 8y is not chosen close to the maximizer
of the likelihood.

@ A choice that sometimes works is the MPLE (maximum
pseudolikelihood estimate)

April 2006 ERGM workshop



0 Maximum pseudolikelihood
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Maximum Pseudolikelihood: Intuition

@ What if we assume that there is no dependence (or very
weak dependence) among the Y;?
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Maximum Pseudolikelihood: Intuition

@ What if we assume that there is no dependence (or very
weak dependence) among the Y;?

@ In other words, what if we approximate the marginal
P(Yjj = 1) by the conditional P(Yj = 1|Y} = y£)?
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Maximum Pseudolikelihood: Intuition

@ What if we assume that there is no dependence (or very
weak dependence) among the Y;?

@ In other words, what if we approximate the marginal
P(Yj = 1) by the conditional P(Yj = 1[Y7 = yi)?
@ Then the Yj are independent with

09 py—g) — A0y

so we obtain an estimate of ¢ using straightforward logistic
regression.
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@ What if we assume that there is no dependence (or very
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@ In other words, what if we approximate the marginal
P(Yj = 1) by the conditional P(Yj = 1[Y7 = yi)?
@ Then the Yj are independent with

09 py—g) — A0y

so we obtain an estimate of ¢ using straightforward logistic

regression.
@ Result: The maximum pseudolikelihood estimate.
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Maximum Pseudolikelihood: Intuition

@ What if we assume that there is no dependence (or very
weak dependence) among the Y;?

@ In other words, what if we approximate the marginal
P(Yj = 1) by the conditional P(Yj = 1[Y7 = yi)?
@ Then the Yj are independent with

09 py—g) — A0y

so we obtain an estimate of ¢ using straightforward logistic
regression.

@ Result: The maximum pseudolikelihood estimate.
@ For independence models, MPLE = MLE!

April 2006 ERGM workshop



Warnings about MPLE

Unfortunately, little is known about the quality of MPL estimates
in general, but we do know some ways in which they can be
misleading.

@ If the model is bad, you'll get nice-looking MPLE results
that do not reveal the problem.

@ If the model is good, in many cases the MPLE looks “close”
to the MLE; however, “close” can be deceiving, since small
changes in 8 can sometimes lead to large differences in
the behavior of randomly generated networks.

April 2006 ERGM workshop
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Geometry of Exponential Random Graph Models

Consider the alternative parametrization of the models
1 A — int(C) defined by

exp {7 Z ()}
2 20—

p(n) = E, [Z2(Y)] =

e The mapping is injective:
p(na) = p(m) — P (Y =y) = P, (Y =y) Vy.
e The mapping in strictly increasing in the sense that

(Ma — )" (1(na) — p(mp)) > 0

with equality only if P, (Y = y) = P, (Y = y) Vy.
e Represents an alternative of the model
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Example of the 2—star model

exp{mE(y) + n25(y)}

c(n1, n2)

where E(y) is the number of edges (0—- N = (9))

S(y) is the number of 2—stars (0 — M = 3(Y))

P(Y =y) =

p=Ey[E(Y)] = » E[Yj] = NE[Y1]

1<J

— 11 is the expected number of edges, or
~ 1 is the probability that two actors are linked.

pe = Ey[S(Y)] = ) E[Y;Yis] = ME[Y15Y13]

1<jg<k

— o is the expected number of 2—stars, or
-1 is the probability that a given actor is tied to two randomly chosen other actors.
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In some cases mixed parameterizations may be better

Let (¢, t?)) be a partition of ¢ such that:

— ¢t is interpretable as a mean value parametrization
— ¢?) is interpretable as the “natural” conditional log-odds

Consider similar partitions (n*, ) of n and (Y (n), k™ (n)) of u(n).

Let A® be the set of values of n® for n varying in A and CV) be the convex hull of
{tM(y) sy € V}.

The mapping n : A — A® x int(C™) defined by
n(n) = (1" (n),n™) (1)
is a parametrization of the model (), ¢, n).

The components 1) and n? are variationally independent, that is, the range of n(n)
IS a product space.
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Degeneracy in the mean value parametrization

e Definition: A model is if ;u(n) is close to the boundary of C

Letdeg)y = {y € YV : Z(y) € bdC} be the set of graph on the boundary of the
convex hull.

Based on the geometry of the mean value parametrization the expected
sufficient statistics are close to a boundary of the hull and the model will place much
probability mass on graphs in deg V.
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This statement can be quantified in a number of ways:

Result: Let e be a unit vector in R? and bd(e) = sup,,cinic(e’ 1).

pn(Ae) — bd(e)eas A T oc.

Py.y(Y € deg)y) — 1las A T oo.

For every d < bd(e), Prey(e' Z(Y) < d) — 0as X\ T oo.

Let ny € intC.

Then Kullback — Leibler divergence(np; Ae) — oo as A T oo.

-
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Effect of Near-Degeneracy on MCMC Estimation

e Closely related to nice properties of simple MCMC schemes (Geyer 1999).

— If a random graph model is simulated using a MCMC based on a
near-degenerate v it will very likely fail.

e Full-conditional MCMC with dyad update:
_ T c
M () = Iileaf | 5(yij)|

where 6(y;;) = Z(?JZ}) — Z(y;;)

— As p(1p) — bd(C), M(¥) — oc
— There exists y € Y with

logit | P(Yi; = 1] Y5 = yf))| = M (v)

— If ¢ is near-degenerate then M (1)) is large and the MCMC will mix very slowly.
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Example of degeneracy of the 2—star model

exp{mE(y) +n25(y)}

P =y) = prE—

M (n) = max{|m/|, m1 + 2(g — 2)n2} MCMC will usually mix poorly.

If u(n) closeto (3,0) (e.g., » = (4.5, —18.4)) then M (n) = 4.5
So an MCMC will approach (3, 0) and stay there
(98.9% and 1.1% at (2,0) € bd(C)).

If (n) close to (9,40) (e.g., n = (—3.43,0.683)) then
M (n) = 3.43. The model places 50% of its mass on graphs with 2 or fewer edges
and 36% on graphs with at least 19 edges.

The model is also e.g.,n = (—3.43,0.67))
uw(n) =~ (4.4,17.1) and the model places almost all its mass on empty graphs.
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Estimation within the mean value parametrization

—If Z(yops) € int(C), the MLE of wis Z (yops)-
—If Z(yops) € int(C) the MLE of u does not exist.
— The MLE /& is unbiased and has minimum variance:

0 log c(n)] ()

E,(4) = Ey [Z(Y)] = nu(n) = [ on;

V,(8) = V, [2(Y)] = [a logc(”)] (n)

3777;3773'

— An estimate of the variance-covariance is available using the same MCMC.
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Existence and uniqueness of MLE

Let C be the convex hull of {Z(y) : y € Y}
- the convex hull of the discrete support points.
Let int(C) be the interior of C.

Result (Barndorff-Nielsen 1978)

The MLE exists if, and only if, Z (yobserved) € int(C)
If it exists, it is unique and can be found by solving
the likelihood equations or by direct optimization of L.
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Figure 1: Enumeration of sufficient statistics for graphs with 7 nodes. The circles are centered on

the possible values and the area of the circle is proportional to the number of graphs with that value
of the sufficient statistic. There are a total of 2,097,152 graphs.
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A Bias-corrected Pseudo-likelihood Estimator

The penalized pseudo-likelihood

Cep(n;y) = Lp(nsy) + %log [1(n)| (2)

where I(n) denotes the expected Fisher information matrix for the formal logistic
model underlying the pseudo-likelinood evaluated at 7.

Motivated by Firth (1993) as a general approach to reducing the asymptotic bias of
MLEs

We refer to the estimator that maximizes ¢ p(n; yobs) as the maximum bias-corrected
pseudo-likelihood estimator (MBLE).
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Simulation study of MLE, MPLE and MBLE

The general structure of the simulation study is as follows:

e Begin with the MLE model fit of interest for a given network.
e Simulate networks from this model fit.
e Fit the model to each sampled network using each method under comparison.

e Evaluate the performance of each estimation procedure in recovering the known
true parameter values, along with appropriate measures of uncertainty.
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Introduction to Law Firm Collaboration Example

From the Emmanuel Lazega’s study of a Corporate Law Firm:

e Each partner asked to identify the others with whom (s)he collaborated.

e Seniority, Sex, Practice (corporate or litigation) and Office (3 locations) available
for all 36 partners.
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Table 1: Natural and mean value model parameters for Original model for Lazega
data, and for model with increased transitivity.
Parameter Natural Parameterization = Mean Value Parameterization

Increased Increased

Original Transitivity Original Transitivity
Structural
edges —6.506 —6.962 115.00 115.00
GWESP 0.897 1.210 190.31 203.79
Nodal
seniority 0.853 0.779 130.19 130.19
practice 0.410 0.346 129.00 129.00
Homophily
practice 0.759 0.756 72.00 72.00
gender 0.702 0.662 99.00 99.00

office 1.145 1.081 85.00 85.00
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Figure 1. Boxplots of the distribution of the MLE, the MPLE and the MBLE of
the geometrically weighted edgewise shared partner statistic (GWESP), differential
activity by practice statistic (Nodal), and homophily on practice statistic (Homophily)
under the natural and mean value parameterization for 1000 samples of the original
Lazega network and 1000 samples of the Lazega network with increased transitivity
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Natural Parameterization, GWESP Mean Value Parameterization, GWESP
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Table 2: Relative efficiency of the MPLE, and the MBLE with respect to the MLE

Natural Parameterization Mean Value Parameterization
Increased Increased
Original Transitivity Original Transitivity
Parameter MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE
Structural
edges 1 0.80 094 1 066 080 1 0.21 0.29 1 0.15 0.20

GWESP 1 0.64 068 1 050 055 1 028 0.37 1 0.19 0.24
Nodal

seniority 1 087 092 1 078 0.83 1 0.22 0.30 1 0.17 0.22
practice 1 091 09 1 0.72 0.77 1 019 0.27 1 0.12 0.16
Homophily

practice 1 091 09 1 094 101 1 023 032 1 0.15 0.19
gender 1 081091 1 078 086 1 0.23 0.31 1 0.17 0.22
office 1 092 100 1 0.79 0.87 1 0.23 0.32 1 0.15 0.20
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Table 3: Coverage rates of nominal 95% confidence intervals for the MLE, the MPLE,
and the MBLE of model parameters for original and increased transitivity models.
Nominal confidence intervals are based on the estimated curvature of the model and
the t distribution approximation.

Natural Parameterization Mean Value Parameterization
Increased Increased
Original Transitivity Original Transitivity
Parameter MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE

Structural

edges 94.9 97.5 98.0 96.4 98.2 98.2 93.1 449 494 85.5 23.8 28.5
GWESP 92.7 746 741 94.2 78.8 77.6 91.4 56.7 62.7 85.9 31.3 36.6
Nodal

seniority  94.4 97.8 98.0 95.4 98.4 98.7 91.6 45.5 49.0 84.4 22.8 27.6
practice 94.0 98.1 98.6 95.5 98.4 98.8 93.2 51.0 57.9 89.9 35.9 39.3
Homophily

practice 94.8 98.1 98.1 94.6 97.9 98.0 92.6 52.0 57.1 89.7 31.1 37.3
gender 95.8 98.7 98.8 95.3 98.1 98.8 92.0 46.5 51.6 84.8 22.7 28.5
office 94.2 98.1 98.4 95.1 98.2 98.4 925 50.2 54.4 87.8 27.0 32.3
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Summary

This is a framework to assess estimators for (ERG) models.

Key features:

The use of the mean-value parametrization space as an alternate metric space to
assess model fit.

The adaptation of a simulation study to the specific circumstances of interest to the
researcher: e.g. network size, composition, dependency structure.

It assesses the efficiency of point estimation via mean-squared error in the different
parameter spaces.

It assesses the performance of measures of uncertainty and hypothesis testing via
actual and nominal interval coverage rates.

It provides methodology to modify the dependence structure of a model in a known
way, for example, changing one aspect while holding the other aspecits fixed.

It enables the assessment of performance of estimators to be to alternative
specifications of the underlying model.
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Case study:

MLE superior to MPLE and MBLE for structural and covariate effects.

— due to the dependence between the GWESP estimates and others

— Greater variability in the GWESP results translates to broad CI

— GWESP standard errors are underestimated resulting in too narrow CI
Inference based on the MPLE is suspect

— Tests for structural parameters tend to be liberal

— Tests for nodal and dyadic attributes conservative

MLE drastically superior on the mean value scale (30% of MSE of MP(B)LE)
— MPLE nominal 95% CI coverage is 50%.

— Gets worse as dependence increases.

MBLE

— Smallest bias for the natural parameter estimates.
— MBLE consistently out-performs the MPLE
(for both natural and mean-value parameters)
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Figure 2: Comparison of error in mean value parameter estimates for edges in original
(top) and increased transitivity (bottom) models.



