# Modeling Networks from Partially-Observed Network Data 

Mark S. Handcock<br>University of Washington<br>joint work with Krista J. Gile<br>Nuffield College, Oxford<br>MURI-UCI April 24, 2009

For details, see:

- Gile, K. and Handcock, M.S. (2006). Model-based Assessment of the Impact of Missing Data on Inference for Networks. Working Paper \#66, Center for Statistics and the Social Sciences, University of Washington. (http://www.csss.washington.edu) ${ }^{1}$
- Handcock, M.S., and Gile, K.J. (2007). Modeling social networks with sampled data. Technical Report \#523, Department of Statistics, University of Washington. (http://www.stat.washington.edu)
- Gile, K.J. (2008). Inference from Partially-Observed Network Data. PhD. Dissertation. University of Washington, Seattle.

[^0]
## Outline

- Network modeling from a statistical perspective
- Statistical Models for Social Networks
- Introduction of two social examples:
- Friendships among school students
- Collaborations within a law firm
- Statistical analysis of social networks
- Mechanisms for the partial observation of social networks
- Analysis of partially-observed social networks
- Missing Data Example: Friendships among school students
- Link-Tracing Sampling Example: Collaborations within a law firm
- Discussion


## Network modeling from a statistical perspective

- Networks are widely used to represent data on relations between interacting actors or nodes.
- The study of social networks is multi-disciplinary
- plethora of terminologies
- varied objectives, multitude of frameworks
- Understanding the structure of social relations has been
the focus of the social sciences
- social structure: a system of social relations tying distinct social entities to one another
- Interest in understanding how social structure form and evolve
- Attempt to represent the structure in social relations via networks
- the data is conceptualized as a realization of a network model
- The data are of at least three forms:
- individual-level information on the social entities
- relational data on pairs of entities
- population-level data


## Deep literatures available

- Social networks community (Heider 1946; Frank 1972; Holland and Leinhardt 1981)
- Statistical Networks Community (Frank and Strauss 1986; Snijders 1997)
- Spatial Statistics Community (Besag 1974)
- Statistical Exponential Family Theory (Barndorff-Nielsen 1978)
- Graphical Modeling Community (Lauritzen and Spiegelhalter 1988, ...)
- Machine Learning Community (Jordan, Jensen, Xing, ...)
- Physics and Applied Math (Newman, Watts, ...)
- Network Sampling (Frank 1971, Thompson and Seber 1996, Thompson 2002, ...)


## Examples of Friendship Relationships

- The National Longitudinal Study of Adolescent Health

```
# www.cpc.unc.edu/projects/addhealth
```

- "Add Health" is a school-based study of the health-related behaviors of adolescents in grades 7 to 12.
- Each nominated up to 5 boys and 5 girls as their friends
- 160 schools: Smallest has 69 adolescents in grades 7-12


School Community Stratum 44 mutual friendships by Grade


## School Community Stratum 44 mutual friendships by Race



2209 Students

- Grade 7

■ Grade 8
$\square$ Grade 9

- Grade 10
- Grade 11

■ Grade 12
$\square$ Grade NA

[^1]
## Features of Many Social Networks

- Mutuality of ties
- Individual heterogeneity in the propensity to form ties
- Homophily by actor attributes
$\Rightarrow$ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001
- higher propensity to form ties between actors with similar attributes e.g., age, gender, geography, major, social-economic status
- attributes may be observed or unobserved
- Transitivity of relationships
- friends of friends have a higher propensity to be friends
- Balance of relationships $\Rightarrow$ Heider (1946)
- people feel comfortable if they agree with others whom they like
- Context is important $\Rightarrow$ Simmel (1908)
- triad, not the dyad, is the fundamental social unit


## The Choice of Models depends on the objectives

- Primary interest in the nature of relationships:
- How the behavior of individuals depends on their location in the social network
- How the qualities of the individuals influence the social structure
- Secondary interest is in how network structure influences processes that develop over a network
- spread of HIV and other STDs
- diffusion of technical innovations
- spread of computer viruses
- Tertiary interest in the effect of interventions on network structure and processes that develop over a network


## Perspectives to keep in mind

- Network-specific versus Population-process
- Network-specific: interest focuses only on the actual network under study
- Population-process: the network is part of a population of networks and the latter is the focus of interest
- the network is conceptualized as a realization of a social process


## (Cross-Sectional) Social Networks

- Social Network: Tool to formally represent and quantify relational social structure.
- Relations can include: friendships, workplace collaborations, international trade
- Represent mathematically as a sociomatrix, $Y$, where $Y_{i j}=$ the value of the relationship from $i$ to $j$

(a) Sociogram

(b) Sociomatrix


## Statistical Models for Social Networks

Notation
A social network is defined as a set of $n$ social "actors" and a social relationship between each pair of actors.

$$
Y_{i j}= \begin{cases}1 & \text { relationship from actor } i \text { to actor } j \\ 0 & \text { otherwise }\end{cases}
$$

- call $Y \equiv\left[Y_{i j}\right]_{n \times n}$ a sociomatrix
- a $N=n(n-1)$ binary array
- The basic problem of stochastic modeling is to specify a distribution for $Y$ i.e., $P(Y=y)$


## A Framework for Network Modeling

Let $\mathcal{Y}$ be the sample space of $Y$ e.g. $\{0,1\}^{N}$
Any model-class for the multivariate distribution of $Y$ can be parametrized in the form:

$$
P_{\eta}(Y=y)=\frac{\exp \{\eta \cdot g(y)\}}{\kappa(\eta, \mathcal{Y})} \quad y \in \mathcal{Y}
$$

Besag (1974), Frank and Strauss (1986)

- $\eta \in \Lambda \subset R^{q} q$-vector of parameters
- $g(y) q$-vector of network statistics.
$\Rightarrow g(Y)$ are jointly sufficient for the model
- For a "saturated" model-class $q=|\mathcal{Y}|-1 \quad$ e.g. $2^{N}-1$
- $\kappa(\eta, \mathcal{Y})$ distribution normalizing constant

$$
\kappa(\eta, \mathcal{Y})=\sum_{y \in \mathcal{Y}} \exp \{\eta \cdot g(y)\}
$$

## Simple model-classes for social networks

Homogeneous Bernoulli graph (Erdős-Rényi model)

- $Y_{i j}$ are independent and equally likely with log-odds $\eta=\operatorname{logit}\left[P_{\eta}\left(Y_{i j}=1\right)\right]$

$$
P_{\eta}(Y=y)=\frac{e^{\eta \sum_{i, j} y_{i j}}}{\kappa(\eta, \mathcal{Y})} \quad y \in \mathcal{Y}
$$

where $q=1, g(y)=\sum_{i, j} y_{i j}, \kappa(\eta, \mathcal{Y})=[1+\exp (\eta)]^{N}$

- homogeneity means it is unlikely to be proposed as a model for real phenomena

Dyad-independence models with attributes

- $Y_{i j}$ are independent but depend on dyadic covariates $x_{k, i j}$

$$
\begin{gathered}
P_{\eta}(Y=y)=\frac{e^{\sum_{k=1}^{q} \eta_{k} g_{k}(y)}}{\kappa(\eta, \mathcal{Y})} \quad y \in \mathcal{Y} \\
g_{k}(y)=\sum_{i, j} x_{k, i j} y_{i j}, \quad k=1, \ldots, q \\
\kappa(\eta, \mathcal{Y})=\prod_{i, j}\left[1+\exp \left(\sum_{k=1}^{q} \eta_{k} x_{k, i j}\right)\right]
\end{gathered}
$$

Of course,

$$
\operatorname{logit}\left[P_{\eta}\left(Y_{i j}=1\right)\right]=\sum_{k} \eta_{k} x_{k, i j}
$$

## Generative Theory for Network Structure

Actor Markov statistics $\quad \Rightarrow$ Frank and Strauss (1986)

- motivated by notions of "symmetry" and "homogeneity"
- $Y_{i j}$ in $Y$ that do not share an actor are
conditionally independent given the rest of the network
$\Rightarrow$ analogous to nearest neighbor ideas in spatial modeling
- Degree distribution: $\mathrm{d}_{k}(y)=$ proportion of actors of degree $k$ in $y$.
- $k$-star distribution: $\mathrm{s}_{k}(y)=$ proportion of $k$-stars in the graph $y$. (In particular, $\mathrm{s}_{2}=$ proportion of edges that exist between pairs of actors.)
- triangles: $\mathrm{t}_{1}(y)=$ proportion of triads that from a complete sub-graph in $y$.


Figure 1: Some configurations for non-directed graphs

General mechanisms motivated by conditional independence
$\Rightarrow$ Pattison and Robins (2002), Butts (2005)
$\Rightarrow$ Snijders, Pattison, Robins and Handcock (2006)

- $Y_{u j}$ and $Y_{i v}$ in $Y$ are conditionally independent given the rest of the network if they could not produce a cycle in the network


Partial conditional dependence when four-cycle is created

This produces features on configurations of the form:

- edgewise shared partner distribution: $\mathrm{ep}_{k}(y)=$ proportion of edges between actors with exactly $k$ shared partners $k=0,1, \ldots$


Figure 2: The actors in the non-directed $(i, j)$ edge have 5 shared partners

- dyadwise shared partner distribution:
$\operatorname{dp}_{k}(y)=$ proportion of dyads with exactly $k$ shared partners $k=0,1, \ldots$

Structural Signatures

- identify social constructs or features
- based on intuitive notions or partial appeal to substantive theory
- Clusters of edges are often transitive:

Recall $t_{1}(y)$ is the proportion of triangles amongst triads

$$
t_{1}(y)=\frac{1}{\binom{g}{3}} \sum_{\{i, j, k\} \in\binom{g}{3}} y_{i j} y_{i k} y_{j k}
$$

A closely related quantity is the proportion of triangles amongst 2-stars

$$
C(y)=\frac{3 \times t_{1}(y)}{s_{2}(y)}
$$

## Statistical Inference for $\eta$

Base inference on the loglikelihood function,

$$
\begin{gathered}
\ell(\eta)=\eta \cdot g\left(y_{\text {obs }}\right)-\log \kappa(\eta) \\
\kappa(\eta)=\sum_{\substack{\text { all possible } \\
\text { graphs } z}} \exp \{\eta \cdot g(z)\}
\end{gathered}
$$

## Approximating the loglikelihood

- Suppose $Y_{1}, Y_{2}, \ldots, Y_{m} \stackrel{\mathrm{i} . i . d .}{\sim} P_{\eta_{0}}(Y=y)$ for some $\eta_{0}$.
- Using the LOLN, the difference in log-likelihoods is

$$
\begin{aligned}
\ell(\eta)-\ell\left(\eta_{0}\right) & =\log \frac{\kappa\left(\eta_{0}\right)}{\kappa(\eta)} \\
& =\log \mathbf{E}_{\eta_{0}}\left(\exp \left\{\left(\eta_{0}-\eta\right) \cdot g(Y)\right\}\right) \\
& \approx \log \frac{1}{M} \sum_{i=1}^{M} \exp \left\{\left(\eta_{0}-\eta\right) \cdot\left(g\left(Y_{i}\right)-g\left(y_{\mathrm{obs}}\right)\right)\right\} \\
& \equiv \tilde{\ell}(\eta)-\tilde{\ell}\left(\eta_{0}\right) .
\end{aligned}
$$

- Simulate $Y_{1}, Y_{2}, \ldots, Y_{m}$ using a MCMC (Metropolis-Hastings) algorithm
$\Rightarrow$ Snijders (2002); Handcock (2002).
- Approximate the MLE $\hat{\eta}=\operatorname{argmax}_{\eta}\left\{\tilde{\ell}(\eta)-\tilde{\ell}\left(\eta_{0}\right)\right\}$ (MC-MLE)
$\Rightarrow$ Geyer and Thompson (1992)
- Given a random sample of networks from $P_{\eta_{0}}$, we can thus approximate (and subsequently maximize) the loglikelihood shifted by a constant.


## Partially-Observed Social Network Data

Some portion of the social network is often unobserved.

$\mathrm{Y}=$|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | - | 1 | 0 | 0 |
| B | 0 | - | 1 | 1 |
| C | 0 | 0 | - | 0 |
| D | 1 | 1 | 1 | - |$\quad \mathrm{O}_{\text {obs }}=$|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | - | $?$ | $?$ | $?$ |
| B | $?$ | - | $?$ | $?$ |
| C | 0 | 0 | - | 0 |
| D | 1 | 1 | 1 | - |$\quad \mathrm{D}=$|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | - | 0 | 0 | 0 |
| B | 0 | - | 0 | 0 |
| C | 1 | 1 | - | 1 |
| D | 1 | 1 | 1 | - |

## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask $10 \%$ of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Partial Observation of Social Networks

- Sampling Design: Choose which part to observe:
"Ask 10\% of employees about their collaborations"
- Egocentric
- Adaptive
- Out-of-design Missing Data:
"Try to survey the whole company, but someone is out sick"
- Boundary Specification Problem:
"Should a contractor be considered a part of the company?"



## Frameworks for Statistical Analysis

|  | Describe <br> Structure | Describe <br> Mechanism |
| ---: | :---: | :---: |
| Fully <br> Observed <br> Data | Description | Modeling <br> $($ Statistical $)$ |
| Partially <br> Observed <br> Data | Design-Based <br> Inference | Likelihood <br> Inference |

## Modeling with Missing and Sampled Data

- Most analysis ignores individuals with missing data
- Earlier work: assume and enforce reciprocity (Stork and Richards 1992)
- Treat respondents and non-respondents separately, pseudo-likelihood (Robins, Pattison, and Woolcock, 2004)
- Fit simple network model with non-observations (Thompson and Frank, 2000)
- This work: extend to full range of stochastic models; expand sophistication of model-checking


## Design-based Inference for Describing Structure

- Example Scientific Questions:
- What proportion of the social contacts of unemployed residents of London are with other unemployed residents?
- What is the average donation size to each political candidate?
- Approach:
- Make probability statements about the relations in the full network based on the observed part of the network
- Weight each observation by the inverse of probability of being sampled
- Advantages:
- Requires no assumptions about network structure
- Disadvantages:
- Requires full knowledge of sampling mechanism, and sampling probabilities
- Difficult to conduct complex analysis such as regression-type models


## Social Network Modeling for Understanding Processes

- Example Scientific Questions:
- Are men in a company more likely to collaborate with other men than with women?
- Are countries more likely to trade with other countries with similar political structures?
- Approach:
- Make probability statements about the social forces that could account for the network
- Create complex regression-style model for relational information
- Advantages:
- Flexible Models to answer complex questions
- Disadvantages:
- Assumes chosen model form is accurate
- Computationally expensive for complex models
- Assume sampling is "Missing at Random"
- Initially, only fit to fully observed networks


## Fitting Models to Networks with Incomplete Data

- Two types of units: nodes and relational structures
- Sampling typically on nodes, inference on relational structures
- Extend and adapt methods from survey sampling and missing data literature (Thompson and Seber, 1996, Little and Rubin, 2002)
- Extend former work on partially-observed network data (Frank, 1971, Frank and Snijders, 1994, Thompson and Frank, 2000)
- Novel Methods: Full range of stochastic models; expand model-checking (Handcock and Gile, 2007, Gile and Handcock, 2006)
- Key Point: require that statistical properties of unobserved relations do not depend on unobserved characteristics, given what was observed


## Fitting Models to Partially Observed Social Network Data

- Two types of data: Observed relations ( $y_{o b s}$ ), and indicators of units sampled ( $D$ ).

$$
\begin{aligned}
\ell(\eta, \delta) & \equiv P\left(Y_{o b s}=y_{o b s}, D \mid \eta, \delta\right) \\
& =\sum_{y_{\text {unobs }}} P\left(Y_{o b s}=y_{o b s}, Y_{\text {unobs }}=y_{\text {unobs }}, D \mid \eta, \delta\right) \\
& =\sum_{y_{\text {unobs }}} P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, Y_{\text {unobs }}=y_{\text {unobs }}, \delta\right) P_{\eta}\left(Y_{\text {obs }}=y_{o b s}, Y_{\text {unobs }}=y_{\text {unobs }}\right)
\end{aligned}
$$

- $\eta$ is the model parameter
- $\delta$ is the sampling parameter

If $P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, Y_{\text {unobs }}=y_{\text {unobs }}, \delta\right)=P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, \delta\right)$ (adaptive sampling or missing at random)

Then

$$
\begin{aligned}
\ell(\eta, \delta) & \equiv P\left(Y_{o b s}=y_{o b s}, D \mid \eta, \delta\right) \\
& =P\left(D \mid Y_{o b s}=y_{o b s}, \delta\right) \sum_{y_{u n o b s}} P_{\eta}\left(Y_{o b s}=y_{o b s}, Y_{u n o b s}=y_{u n o b s}\right)
\end{aligned}
$$

## Fitting Models to Partially Observed Social Network Data

- Two types of data: Observed relations ( $y_{o b s}$ ), and indicators of units sampled ( $D$ ).

$$
\begin{aligned}
\ell(\eta, \delta) & \equiv P\left(Y_{o b s}=y_{o b s}, D \mid \eta, \delta\right) \\
& =\sum_{y_{\text {unobs }}} P\left(Y_{o b s}=y_{o b s}, Y_{\text {unobs }}=y_{\text {unobs }}, D \mid \eta, \delta\right) \\
& =\sum_{y_{\text {unobs }}} P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, Y_{\text {unobs }}=y_{\text {unobs }}, \delta\right) P_{\eta}\left(Y_{\text {obs }}=y_{o b s}, Y_{\text {unobs }}=y_{\text {unobs }}\right)
\end{aligned}
$$

- $\eta$ is the model parameter
- $\delta$ is the sampling parameter

If $P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, Y_{\text {unobs }}=y_{\text {unobs }}, \delta\right)=P\left(D \mid Y_{\text {obs }}=y_{\text {obs }}, \delta\right)$ (adaptive sampling or missing at random)

Then

$$
\begin{aligned}
\ell(\eta, \delta) & \equiv P\left(Y_{o b s}=y_{o b s}, D \mid \eta, \delta\right) \\
& =P\left(D \mid Y_{o b s}=y_{o b s}, \delta\right) \sum_{y_{u n o b s}} P_{\eta}\left(Y_{o b s}=y_{o b s}, Y_{u n o b s}=y_{u n o b s}\right)
\end{aligned}
$$

- Can find maximum likelihood estimates by summing over the possible values of unobserved, ignoring sampling
- Sample with Markov Chain Monte Carlo (MCMC)


## When is Sampling MAR?

## Examples of MAR Sampling:

- Individual sample, sample based on observed things like race, sex, and age that we know.
- Link-tracing sample starting with a MAR sample with follow-up based on observed relations with others in the sample, as well as things like race and sex and age.
- Link-tracing with probability proportional to number of partners is MAR!

Examples of NMAR (not missing at random) Sampling:

- Individual sample based on unobserved properties of non-respondents - like infection status or illicit activity.
- Link-tracing sample starting where links are followed dependent on unobserved properties of alters.


## Application to ERGM

$$
\begin{gathered}
\ell(\eta, \delta) \equiv \ell(\delta) \ell(\eta) \\
\ell(\eta) \equiv \sum_{y_{u n o b s}} P_{\eta}\left(Y_{o b s}=y_{o b s}, Y_{u n o b s}=y_{u n o b s}\right) \\
=\sum_{y_{u n o b s}} \frac{\exp \left\{\eta \cdot g\left(y_{o b s}+y_{u n o b s}\right)\right\}}{\kappa(\eta, \mathcal{Y})}=\frac{\kappa\left(\eta, \mathcal{Y} \mid y_{o b s}\right)}{\kappa(\eta, \mathcal{Y})}
\end{gathered}
$$

where $\kappa\left(\eta, \mathcal{Y} \mid y_{o b s}\right)=\sum_{y_{\text {unobs }}} \exp \left\{\eta \cdot g\left(y_{\text {obs }}+y_{\text {unobs }}\right)\right\}$.
However

$$
P_{\eta}\left(Y_{u n o b s}=y_{u n o b s} \mid Y_{o b s}=y_{o b s}\right)=\frac{\exp \left\{\eta \cdot g\left(y_{o b s}+y_{u n o b s}\right)\right\}}{\kappa\left(\eta, \mathcal{Y} \mid y_{o b s}\right)} \quad y_{u n o b s} \in \mathcal{Y}\left(y_{o b s}\right)
$$

where $\mathcal{Y}\left(y_{o b s}\right)=\left\{y_{\text {unobs }}: y+y_{o b s} \in \mathcal{Y}\right\}$
so estimate $\kappa\left(\eta, \mathcal{Y} \mid y_{o b s}\right)$ with same Markov Chain Monte Carlo (MCMC)

## Example: Friendships in a School

From the National Longitudinal Survey on Adolescent Health - Wave 1:


- Each student asked to nominate up to 5 male and 5 female friends
- Sex and Grade available for 89 students, 70 students reported friendships.


## Example: Friendships in a School

From the National Longitudinal Survey on Adolescent Health - Wave 1:


- Each student asked to nominate up to 5 male and 5 female friends
- Sex and Grade available for 89 students, 70 students reported friendships.


## Example: Friendships in a School

From the National Longitudinal Survey on Adolescent Health - Wave 1:


- Each student asked to nominate up to 5 male and 5 female friends
- Sex and Grade available for 89 students, 70 students reported friendships.


## Example: Friendships in a School

- Scientific Question: Do friendships form in an egalitarian or an hierarchical manner?
- Methodological Question: Can we fit a network model to a network with missing data? Is the fit different from that of just the observed data?
$P(D \mid Y, \delta)=P\left(D \mid y_{o b s}, \delta\right) \quad$ (missing at random)
Does observed status depend on unobserved characteristics?


## Structure of Data

- Up to 5 female friends and up to 5 male friends
- 89 students in school
- 70 completed friendship nominations portion of survey



## Example: Friendships in a School

Fit an ERGM to the partially observed data, get coefficients like in logistic regression.
Terms in the model:

- Density: Overall rate of ties
- Reciprocity: Do students tend to reciprocate nominations?
- Popularity by Grade: Do students in different grades receive different rates of ties?
- Popularity by Sex: Do boys and girls receive different rates of ties?
- Age:Sex Mixing: Rates of ties between older and younger boys and girls
- Propensity for ties within sex and grade to be transitive (hierarchical)
- Propensity for ties within sex and grade to be cyclical (egalitarian)
- Isolation: Propensity for students to receive no nominations


## Percent of Possible Relations Realized

|  | Observed |
| :--- | ---: |
| Respondents to Respondents | 8.2 |
| Respondents to Non-Respondents | 6.2 |
| Non-Respondents to Respondents | - |
| Non-Respondents to Non-Respondents | - |



## Goodness of Fit: Percent of Possible Relations Realized

|  | Observed | Fit |
| :--- | ---: | ---: |
| Respondents to Respondents | 8.2 | 7.6 |
| Respondents to Non-Respondents | 6.2 | 8.0 |
| Non-Respondents to Respondents | - | 7.2 |
| Non-Respondents to Non-Respondents | - | 9.3 |


(a) Observed

(b) Fit

## Goodness of Fit: Percent of Possible Relations Realized

|  | Observed | Original | Diff. Popularity |
| :--- | ---: | ---: | ---: |
| Respondents to Respondents | 8.2 | 7.6 | 8.1 |
| Respondents to Non-Respondents | 6.2 | 8.0 | 6.2 |
| Non-Respondents to Respondents | - | 7.2 | 7.4 |
| Non-Respondents to Non-Respondents | - | 9.3 | 7.1 |


(c) Observed

(d) Original

(e) Differential Popularity

|  | coefficient | s.e. |
| :--- | ---: | :--- |
| Density | -1.138 | $0.19^{* * *}$ |
| Sex and Grade Factors |  |  |
| Grade 8 Popularity | -0.178 | 0.14 |
| Grade 9 Popularity | -0.420 | $0.16^{* *}$ |
| Grade10 Popularity | -0.339 | $0.16^{*}$ |
| Grade 11 Popularity | 0.256 | 0.19 |
| Grade 12 Popularity | 0.243 | 0.20 |
| Male Popularity | 0.779 | $0.17^{* * *}$ |
| Non-Resp Popularity | -0.322 | $0.10^{* *}$ |
| Sex and Grade Mixing |  |  |
| Girl to Same Grade Boy | 0.308 | 0.23 |
| Boy to Same Grade Girl | -0.453 | $0.23^{*}$ |
| Girl to Older Girl | -1.406 | $0.16^{* * *}$ |
| Girl to Younger Girl | -1.873 | $0.21^{* * *}$ |
| Girl to Older Boy | -1.412 | $0.14^{* * *}$ |
| Girl to Younger Boy | -2.129 | $0.24^{* * *}$ |
| Boy to Older Boy | -1.444 | $0.16^{* *}$ |
| Boy to Younger Boy | -2.788 | $0.35^{* * *}$ |
| Boy to Older Girl | -1.017 | $0.14^{* * *}$ |
| Boy to Younger Girl | -1.660 | $0.18^{* * *}$ |
| Mutuality | 3.290 | $0.22^{* * *}$ |
| Transitivity |  |  |
| Transitive Same Sex and Grade | 0.844 | $0.04^{* * *}$ |
| Cyclical Same Sex and Grade | -1.965 | $0.16^{* * *}$ |
| Isolation | 5.331 | $0.64^{* * *}$ |

coefficient s.e.

| Density | -1.138 | $0.19^{* * *}$ |
| :--- | ---: | :--- |
| Sex and Grade Factors | -0.178 | 0.14 |
| Grade 8 Popularity | -0.420 | $0.16^{* *}$ |
| Grade 9 Popularity | -0.339 | $0.16^{*}$ |
| Grade10 Popularity | 0.256 | 0.19 |
| Grade 11 Popularity | 0.243 | 0.20 |
| Grade 12 Popularity | -0.379 | $0.17^{* * *}$ |
| Male Popularity | $0.10^{* *}$ |  |
| Non-Resp Popularity | -0.453 | 0.23 |
| Sex and Grade Mixing | -1.406 | $0.13^{*}$ |
| Girl to Same Grade Boy | -1.873 | $0.21^{* * *}$ |
| Boy to Same Grade Girl | -1.412 | $0.14^{* * *}$ |
| Girl to Older Girl | -2.129 | $0.24^{* * *}$ |
| Girl to Younger Girl | -1.444 | $0.16^{* * *}$ |
| Girl to Older Boy | -2.788 | $0.35^{* * *}$ |
| Girl to Younger Boy | -1.017 | $0.14^{* * *}$ |
| Boy to Older Boy | -1.660 | $0.18^{* * *}$ |
| Boy to Younger Boy | 3.290 | $0.22^{* * *}$ |
| Boy to Older Girl |  |  |
| Boy to Younger Girl | 0.844 | $0.04^{* * *}$ |
| Mutuality | -1.965 | $0.16^{* * *}$ |
| Transitivity | 5.331 | $0.64^{* * *}$ |
| Transitive Same Sex and Grade |  |  |
| Cyclical Same Sex and Grade |  |  |

coefficient s.e.

| Density | -1.138 | $0.19^{* * *}$ |
| :--- | ---: | :--- |
| Sex and Grade Factors |  |  |
| Grade 8 Popularity | -0.178 | 0.14 |
| Grade 9 Popularity | -0.420 | $0.16^{* *}$ |
| Grade10 Popularity | 0.339 | $0.16^{*}$ |
| Grade 11 Popularity | 0.243 | 0.19 |
| Grade 12 Popularity | 0.779 | $0.17^{* * *}$ |
| Male Popularity | -0.322 | $0.10^{* *}$ |
| $\quad$ Non-Resp Popularity |  |  |
| Sex and Grade Mixing | 0.308 | 0.23 |
| Girl to Same Grade Boy | -0.453 | $0.23^{*}$ |
| Boy to Same Grade Girl | -1.873 | $0.16^{* * *}$ |
| Girl to Older Girl | $0.21^{* * *}$ |  |
| Girl to Younger Girl | -1.412 | $0.14^{* * *}$ |
| Girl to Older Boy | -2.129 | $0.24^{* * *}$ |
| Girl to Younger Boy | -1.444 | $0.16^{* * *}$ |
| Boy to Older Boy | -2.788 | $0.35^{* * *}$ |
| Boy to Younger Boy | -1.017 | $0.14^{* * *}$ |
| Boy to Older Girl | -1.660 | $0.18^{* * *}$ |
| Boy to Younger Girl | 3.290 | $0.22^{* * *}$ |
| Mutuality |  |  |
| Transitivity | 0.844 | $0.04^{* * *}$ |
| Transitive Same Sex and Grade | -1.965 | $0.16^{* * *}$ |
| Cyclical Same Sex and Grade | 5.331 | $0.64^{* * *}$ |
| Isolation |  |  |


|  | coefficient | s.e. |
| :--- | ---: | :--- |
| Density | -1.138 | $0.19^{* * *}$ |
| Sex and Grade Factors | -0.178 | 0.14 |
| Grade 8 Popularity | -0.420 | $0.16^{* *}$ |
| Grade 9 Popularity | -0.339 | $0.16^{*}$ |
| Grade10 Popularity | 0.256 | 0.19 |
| Grade 11 Popularity | 0.243 | 0.20 |
| Grade 12 Popularity | 0.779 | $0.17^{* * *}$ |
| Male Popularity | -0.322 | $0.10^{* *}$ |
| $\quad$ Non-Resp Popularity |  |  |
| Sex and Grade Mixing | 0.308 | 0.23 |
| Girl to Same Grade Boy | -0.453 | $0.23^{*}$ |
| Boy to Same Grade Girl | -1.406 | $0.16^{* * *}$ |
| Girl to Older Girl | -1.873 | $0.21^{* * *}$ |
| Girl to Younger Girl | -1.412 | $0.14^{* * *}$ |
| Girl to Older Boy | -2.129 | $0.24^{* * *}$ |
| Girl to Younger Boy | -1.444 | $0.16^{* * *}$ |
| Boy to Older Boy | -2.788 | $0.35^{* * *}$ |
| Boy to Younger Boy | -1.017 | $0.14^{* * *}$ |
| Boy to Older Girl | -1.660 | $0.18^{* * *}$ |
| Boy to Younger Girl | 3.290 | $0.22^{* * *}$ |
| Mutuality |  |  |
| Transitivity | 0.844 | $0.04^{* * *}$ |
| Transitive Same Sex and Grade | -1.965 | $0.16^{* * *}$ |
| Cyclical Same Sex and Grade | 5.331 | $0.64^{* * *}$ |
| Isolation |  |  |

## Conclusions, School Friendships Example

- Nominations are reciprocated at a higher rate than random
- Males receive nominations from other males at a higher rate than females from females
- Nominations within grade are more likely than outside grade
- Nominations of older students are more likely than younger students
- Nominations within sex and grade are more consistent with a hierarchical rather than egalitarian structure
- More students receive no nominations than we would expect at random.


## Law Firm Collaboration Example

From the Emmanuel Lazega's study of a Corporate Law Firm:


- Each partner asked to identify the others with whom (s)he collaborated.
- Seniority, Sex, Practice (corporate or litigation) and Office (3 locations) available for all 36 partners.
- Simulated sampling: Start with 2 partners and include all their collaborators, as well as all collaborators of their collaborators.


## Structure of Data

- 36 partners total, each reported all their collaborations
- Simulated samples: each begins with 2 seeds, samples 2 waves
- Between 2 (once) and 36 (3 times) partners sampled among 630 possible samples



## Law Firm Collaboration Example

- Scientific Question: Do collaborations happen more often within the same practice, controlling for location and clustering?
- Methodological Question: Can we fit a network model to a network sampled by link-tracing?
$P(D \mid Y, \delta)=P\left(D \mid y_{\text {obs }}, \delta\right) \quad$ (adaptive sampling)
Does observed status depend on unobserved quantities?
$P(D \mid Y, \delta)=P($ seeds $) P(D \mid Y, \delta$, seeds $)=P($ seeds $) P\left(D \mid y_{o b s}, \delta\right.$, seeds $)$
So if initial sample missing at random, link-tracing adaptive.


## Performance of Parameter Estimates

|  | complete <br> data <br> value | s.e. | bias <br> (\%) | RMSE <br> (\%) | efficiency <br> loss (\%) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sarameter |  |  |  |  |  |
| Density | -6.51 | 0.57 | 0.2 | 1.2 | 1.7 |
| GWESP | 0.90 | 0.15 | 0.8 | 3.7 | 5.1 |
| Nodal |  |  |  |  |  |
| Seniority | 0.85 | 0.24 | 0.3 | 3.1 | 1.3 |
| Practice | 0.41 | 0.12 | 0.4 | 5.3 | 3.5 |
| Homophily |  |  |  |  |  |
| Practice | 0.76 | 0.19 | 0.8 | 4.3 | 2.9 |
| Gender | 0.70 | 0.25 | 0.9 | 4.7 | 1.7 |
| Office | 1.15 | 0.19 | 0.7 | 2.9 | 2.8 |

## Performance of Parameter Estimates

|  | complete <br> data <br> value | s.e. | bias <br> $(\%)$ | RMSE <br> $(\%)$ | efficiency <br> loss (\%) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| parameter |  |  |  |  |  |
| Structural |  | 0.51 | 0.57 | 0.2 | 1.2 |
| Density | -6.90 | 0.15 | 0.8 | 3.7 | 1.7 |
| GWESP |  |  |  |  |  |
| Nodal | 0.85 | 0.24 | 0.3 | 3.1 | 1.3 |
| Seniority | 0.41 | 0.12 | 0.4 | 5.3 | 3.5 |
| Practice |  |  |  |  |  |
| Homophily |  | 0.19 | 0.8 | 4.3 | 2.9 |
| Practice | 0.76 | 0.1 |  |  |  |
| Gender | 0.70 | 0.25 | 0.9 | 4.7 | 1.7 |
| Office | 1.15 | 0.19 | 0.7 | 2.9 | 2.8 |

## Model Fits: Kullback-Leibler divergence from Truth



## Conclusions, Law Firm Collaborations Example

- Collaborations clustered more than at random
- Senior lawyers collaborate more than junior lawyers
- Corporate lawyers collaborate more than litigation lawyers
- Collaboration more likely between same-sex pairs
- Collaboration more likely between same-office pairs
- Collaboration more likely between same-practice pairs


## Discussion

Missing Data, School Friendship Example:

- Challenge: Only part of network observed
- Fit model to all observed data
- Leverage information in sample
- In-ties (and in-degrees)
- Covariate information
- Limitations:
- Assume full network size known
- Requires identifiability of alters
- Missing at Random data
- Implications for Study Design
- Collect and keep data relating to non-respondents:
* In-ties
* Covariate information
* Number of non-respondents
- Likelihood inference is possible with missing data!


## Discussion

Sampling, Law Firm Collaboration Example:

- Challenge: Observed data due to complicated link-tracing process
- Fit model to observed data
- Leverage information in sample
- In-ties
- Covariate information
- Link-tracing sample is Adaptive!
- Limitations
- Assume full network size known
- Requires identifiability of alters
- Requires Missing at Random initial sample
- Implications for Study Design
- Collect and keep data relating to non-respondents:
* In-ties
* Covariate information
* Number of non-respondents
- Likelihood inference is possible with link-tracing sample!


## Discussion

- Network models can be applied to partially-observed network data to address scientific questions about the full network.
- Missing Data (missing at random)
- Sampled Data (egocentric or adaptive)
- Do not need simple random sample to be representative
- Some forms of additional information collected in the study can greatly improve possibilities for inference.
- If not missing at random or adaptive, can use extra information to improve inference
- Measurement of sampling biases
- Any characteristics of unobserved units
- All models fit with an Exponential-Family Random Graph Model using statnet R software.


[^0]:    ${ }^{1}$ Research supported by NICHD grant 7R29HD034957 and NIDA 7R01DA012831, and ONR award N00014-08-1-1015.

[^1]:    $\square$ White (non-Hispanic)

    - Black (non-Hispanic)
    $\square$ Hispanic (of any race)
    $\square$ Asian / Native Am / Other (non-Hispanic)
    $\square$ Race NA

