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Outline

e Introduction to ERGM

e Current methods of parameter estimation:
— MCMCMLE: Markov chain Monte-Carlo estimation
— MPLE: Maximum pseudo-likelihood estimation

e Variational methods:

— Exponential families and variational inference
— Approximation of intractable families

— Application on ERGM

— Simulation study
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Introduction to ERGM

Network Notations

m(m—1) dyads

Sociomatrix (adjacency matrix) Y: {vyi ;}ij=1, .n
Edge set {(¢,7) : vi; = 1}.

Undirected network: {y; ; = y;; = 1}

m actors; n =
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ERGM

Exponential Family Random Graph Model (Frank and Strauss, 1986; Wasserman and
Pattison, 1996; Handcock, Hunter, Butts, Goodreau and Morris, 2008):

log[P(Y — Yobs; 77)] — nT¢(yObs) — /4"’(777 y)? (TS R

where

Y is the random matrix
n € Q C R?is the vector of model parameters
¢ (y) is a g-vector of statistics

k(n,Y) = log Y,y exp{n’ ¢(z)} is the normalizing factor, which is difficult to
calculate.

e R package: statnet
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Current estimation approaches for ERGM

MCMC-MLE (Geyer and Thompson 1992, Snijders, 2002; Hunter, Handcock, Bultts,
Goodreau and Morris, 2008):

1. Set an initial value n, for parameter 7.
2. Generate MCMC samples of size m from P, by Metropolis algorithm.
3. lterate to obtain a maximizer 7 of the approximate log-likelihood ratio:

(1 — 10)" $(Yobs) — log [% Z exp {(n — 770)T¢(Y;:)}]

4. If the estimated variance of the approximate log-likelihood ratio is too large in
comparison to the estimated log-likelihood for 7, return to step 2 with ng = 7.

5. Return n as MCMCMLE.
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MPLE (Besag, 1975; Strauss and lkeda, 1990):

Conditional formulation:
logit[P(Y;; = 1Y, = y)] =n' 6(y;;)-

where §(y;) = ¢(y;;) — ¢(y;;), the change in ¢(y) when y;; changes from 0 to 1
while the rest of network remains ;.
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Comparison

Simulation study: van Duijn, Gile and Handcock (2008)

MCMC-MLE MPLE
e Slow-mixing e Deterministic model; computation is fast
e Highly depends on initial values e Unstable
e Be able to model various network e Dyadic-independent model,
characteristics together. could not capture high-order network characteristics.
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Variational method

Exponential families and variational representations
Basics of exponential family:

log[p(x; 0)] = (0, ¢(x)) — ~(0).

Sufficient statistics: ¢(x).

Log-partition function: x(0) = log >, .+ exp(0, ¢(x)).
Mean value parametrization: © € R? := E(¢(x))

Mean value space (convex hull):

M= {p R 3Ip()st. > ¢@)p(x) =p}.
X
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The log-partition function is smooth and convex in terms of 6.

Suppose 6 = (6a, 03, --) and ¢(x) = (da(x), dp(z), - ):
oK

55 () = Elda(@)] = 3 da(@)p(a; 0) "
OK
5555, (%) = El#a(@)9s(2)] — Elga(@)E[#(2)] @)

So, 11(0) can be reexpressed as

0K
0) = —(6
pu(0) = - (0)
and it has gradient
0%k
060700

(6).

(Barndorff-Nielson, 1978; Handcock, 2003; Wainwright and Jordan, 2003)
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Exp: Ising model on graph G(V, F)
logp(z,0) = {> Oz 4+ >  Oazeax, — w(0)}, (3)
seV (s,t)eE

where:

e 1., associated with s € V is a Bernoulli random variable;

e components x; and x; are allowed to interact directly only if s and ¢ are joined by
an edge in the graph.

The relevant mean parameters in this representation are as follows:

Hs = Ee[ajs] — p(ms = 1; 8)7 Hst = ]EQ[xsxt] — p(st =1,x; = 1; 0)
For each edge (s, t), the triplet {us, pt, ust} uniquely determines a joint marginal
p(xs, xy; ) as follows:

(T4 pse — pos — pe) (Bt — Hst) ] .

p(CUS,ZBt;,LL): |: (,U, _,th) [Lst
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To ensure the joint marginal, we impose non-negativity constraints on all four entries,
as follows:

I+ pst —ps —pe = 0
Mst Z O
Ls(/ty — st = 0O

The inequalities above define M.
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Variational inference and mean value estimation

For any u € riM (ri: relative interior), we have following lower bound:

k(0) = sup (0, u) — K" () (4)
peM

(O = log3 ORLOGENY

= p(x;0)
eXp{ (0, p(x))} ,
> l;(l (2 0) )p(x; 0)
— Z(G, d(x))p(x; 0) — Z log(p(z; 0))p(z;0)

— E(, ¢(x)) — Ellog(p(; 0))] = (6, u) — K" (1).

The inequality follows from Jensen’s inequality, and the last equality follows from
E(¢p(x)) = pand k™ (n) = E[log(p(x;0(r)))], the negative entropy of distribution

p(x; 0).
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Why variational method?

e Variational representation turns the problem of calculating intractable summation/integrals
to optimization problem (finding lower bound of x over M).

e The problem of computing mean parameters can be solved simultaneously.
Two main difficulties:
e The constraint set M of realizable mean parameters is difficult to characterize in

an explicit manner.
e () is lack of explicit form and needs proper approximation.
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Mean value estimation

1 is obtained by solving the optimization problem in (4).
However, the dual function x* lacks an explicit form in many cases.

We restrict the choice of i to a tractable subset M;(H) of M(G), where H is the
tractable subgraph of G. The lower bound in (4) will then be computable.

The solution of the optimization problem

sup (1, 0) — iy (1)}
peEM(H)

specifies optimal approximation fi; of u.

The optimal ¢, in fact, minimizes the Kullback-Leibler divergence between the
tractable M and the target constraint M, and KL divergence between their natural
parameter spaces as well.
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Ising model on Graph: Approximation of «*

Exp: Ising model on Graph: Approximation of *

Assume the tractable graph Hy is fully disconnected, then the mean value parameter
setis

Mo(Ho) = {(1s, pst)[0 < ps < 1, prst = pspie }
Here, us = p(xs = 1) and pst = p(zs = 1,z = 1) = pspe. SO, the distribution on
H, is fully factorizable.

Deriving from Bernoulli distribution,

R (1) = > [1slog ps + (1 — ps) log(1 — p)].

By (4),

rk(0) = max {Z«%uﬁ D Oseprsp— > 1 log pst(1—ps) log(1—pus)] }-

{psyel0]” (s,t)EE seV
(5)
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After taking gradient and setting it to zero, we have following updates for u:

logit(1s) < 054+ > Ospss. (6)
teN (s)

Apply (6) iteratively (coordinate ascent) to each node until convergence is reached.
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Applications to ERGM

Dependence Graph

e Gy is a graph with m actors and n = @ dyads
e Construct a dependence graph Dy to describe the dependence structure of Gy-:
Dy = G(V (D), E(D)).
— Eachdyad (i,5),4 < j on G is an actoron D.
— Each actor (ij) € V(D) has a binary variable y;;.
— Each edge on D exists if (i5) and (kl) as actors on Dy share a common value,
i.e (i7) and (kl) as dyads on Gy share a node.

e Frank and Strauss, 1986.

Dependence Graph: D

Figure 1: Dependence Graph D
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Exp: Erdos-Renyi Model: For an undirected random graph ¥ = {Y;,}, all dyads
are mutually independent, so the dependency graph D is fully disconnected. Each
vij, (1j) € D(V) is a Bernoulli random variable. The model can be written as

log[Py(Y = y)] = Zez’jyij’ —k(0,Y), y €.

i<j
Calculating entropy of Bernoulli distribution, we have

K () = > [wijlog(pig) + (1 — pij) log(1 — pig)], (7)

1<J
where p;; = P(Y;; = 1). Then,

k(0) = sup{(0,u) — k"(1)} = > log(1l + exp(6;))),

HeM i<j

Nij
_IJI//I:j -

when 91']' = lOg(l



A start of Variational Methods for ERGM [18]

2-star ERGM model

Analogous to Ising model, on dependence graph D = G(V (D), E(D)),

log P(Y,0) = > Oys+ > Oaysyr — 6(0), s: (ij) € V(G).
seV (D) (s,t)EE(D)

If 0, = m,s € Vand 05 = no, (s,t) € E,

log P(Y,n) = {m Z Yij + M2 Z Z Yi;Yir — K(N)},

i<j i g k>

which corresponds to the canonical 2-star model.
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Given a graph Gy with 6 actors and its dependency graph Dy with 15 nodes.

For Ising model

logp(x,0) = {Z 0sys + Z 0s:ysyt — x(0)},

seV (s,;t)€Ep
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Compare p"“" obtained from naive mean field algorithm to x™“™“ obtained from

MCMC samples for fixed 0’s.

6., =0.2, Vst
(IJ)S 93 M;TLCTTLC M’;)CL?“
12 0.5 0.811 0.848
13 -0.5 0.666 0.671
14 0.5 0.852 0.848
15 -0.5 0.665 0.684
16 0.5 0.834 0.846
23 -0.5 0.671 0.671
24 0.5 0.831 0.848
25 -0.5 0.672 0.683
26 0.5 0.854 0.846
34 -0.5 0.672 0.671
35 0.5 0.855 0.837
36 -0.5 0.683 0.668
45 0.5 0.849 0.846
46 -0.5 0.672 0.683
56 0.0 0.737 0.772
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For 2-star model, let0; = n; € [—2,2]and 05, = n2 € [—2,2]. u = P(xs = 1), Vs.

mcmec

Compare ™" (11, 2) with
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Figure 2: pMEMC g, pvar
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Parameter estimation by variational inference

. Start with (¥

. Estimate x(60) from naive mean field algorithm

. Calculate k(0) = (0,n) — «"(pn) and log-likelihood 1(0,y). Also, calculate
VE(8) = Eg(o(x)) and VI(0, y) = ¢(x) — Eo(p()).

. Update 6 by gradient ascent:

o) = 0" 4 4 x V(6™ y),y — 0.

. lterate until & converges.
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Simulation study

Figure 3: A sample graph with 6 edges and 12 2-stars

2-star ERGM m Mo

MLE -1.69 0.39
MCMC-MLE | -1.74  0.40
MPLE -7.54 2.18

Var-MLE -1.99 0.465
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n.iter
I I I I
500 1000 1500 2000
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Figure 4: Convergence of Var-MLE
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Discussion and Future work

Future work:

e Better approximation of A*:

— Structured mean field algorithm
— Bethe entropy approximation
— Clustered variational method

e Extension to general ERGM: clustering structure of dependence graph; constraint
space

e Continuous graph: Gaussian random field
e Curved-exponential family
e Hybrid of MCMC and variational methods
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Thanks for your attention!



