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Outline

• Introduction to ERGM
• Current methods of parameter estimation:

– MCMCMLE: Markov chain Monte-Carlo estimation
– MPLE: Maximum pseudo-likelihood estimation

• Variational methods:
– Exponential families and variational inference
– Approximation of intractable families
– Application on ERGM
– Simulation study
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Introduction to ERGM

Network Notations

• m actors; n = m(m−1)
2 dyads

• Sociomatrix (adjacency matrix) Y : {yi,j}i,j=1,··· ,n

• Edge set {(i, j) : yi,j = 1}.
• Undirected network: {yi,j = yj,i = 1}
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ERGM

Exponential Family Random Graph Model (Frank and Strauss, 1986; Wasserman and
Pattison, 1996; Handcock, Hunter, Butts, Goodreau and Morris, 2008):

log[P (Y = yobs; η)] = ηTφ(yobs)− κ(η,Y), y ∈ Y

where

• Y is the random matrix
• η ∈ Ω ⊂ Rq is the vector of model parameters
• φ(y) is a q-vector of statistics
• κ(η,Y) = log

P
z∈Y exp{ηTφ(z)} is the normalizing factor, which is difficult to

calculate.
• R package: statnet
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Current estimation approaches for ERGM

MCMC-MLE (Geyer and Thompson 1992, Snijders, 2002; Hunter, Handcock, Butts,
Goodreau and Morris, 2008):

1. Set an initial value η0, for parameter η.
2. Generate MCMC samples of size m from Pη0 by Metropolis algorithm.
3. Iterate to obtain a maximizer η̃ of the approximate log-likelihood ratio:

(η − η0)
Tφ(yobs)− log

h 1

m

mX

i=1

exp
˘
(η − η0)

Tφ(Yi)
¯i

4. If the estimated variance of the approximate log-likelihood ratio is too large in
comparison to the estimated log-likelihood for η̃, return to step 2 with η0 = η̃.

5. Return η̃ as MCMCMLE.
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MPLE (Besag, 1975; Strauss and Ikeda, 1990):

Conditional formulation:

logit[P (Yij = 1|Y C
ij = yC

ij)] = ηTδ(yC
ij).

where δ(yC
ij) = φ(y+

ij) − φ(y−ij), the change in φ(y) when yij changes from 0 to 1
while the rest of network remains yC

ij.
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Comparison

Simulation study: van Duijn, Gile and Handcock (2008)

MCMC-MLE MPLE
• Slow-mixing
• Highly depends on initial values
• Be able to model various network
characteristics together.

• Deterministic model; computation is fast
• Unstable
• Dyadic-independent model;
could not capture high-order network characteristics.
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Variational method

Exponential families and variational representations
Basics of exponential family:

log[p(x; θ)] = 〈θ, φ(x)〉 − κ(θ).

• Sufficient statistics: φ(x).
• Log-partition function: κ(θ) = log

P
x∈X exp〈θ, φ(x)〉.

• Mean value parametrization: µ ∈ Rq := E(φ(x))

• Mean value space (convex hull):

M =
˘

µ ∈ Rq| ∃p(·) s.t.
X

X
φ(x)p(x) = µ

¯
.
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The log-partition function is smooth and convex in terms of θ.

Suppose θ = (θα, θβ, · · · ) and φ(x) = (φα(x), φβ(x), · · · ):

∂κ

∂θα
(θ) = E[φα(x)] :=

X

x∈X
φα(x)p(x; θ). (1)

∂κ

∂θα∂θβ
(θ) = E[φα(x)φβ(x)]− E[φα(x)]E[φβ(x)]. (2)

So, µ(θ) can be reexpressed as

µ(θ) =
∂κ

∂θ
(θ)

and it has gradient
∂2κ

∂θT∂θ
(θ).

(Barndorff-Nielson, 1978; Handcock, 2003; Wainwright and Jordan, 2003)
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Exp: Ising model on graph G(V, E)

log p(x, θ) = {
X

s∈V

θsxs +
X

(s,t)∈E

θstxsxt − κ(θ)}, (3)

where:

• xs, associated with s ∈ V is a Bernoulli random variable;
• components xs and xt are allowed to interact directly only if s and t are joined by

an edge in the graph.

The relevant mean parameters in this representation are as follows:

µs = Eθ[xs] = p(xs = 1; θ), µst = Eθ[xsxt] = p(xs = 1, xt = 1; θ).

For each edge (s, t), the triplet {µs, µt, µst} uniquely determines a joint marginal
p(xs, xt; µ) as follows:

p(xs, xt; µ) =

»
(1 + µst − µs − µt) (µt − µst)

(µs − µst) µst

–
.
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To ensure the joint marginal, we impose non-negativity constraints on all four entries,
as follows:

1 + µst − µs − µt ≥ 0

µst ≥ 0

µs(/t) − µst ≥ 0

The inequalities above define M.
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Variational inference and mean value estimation

For any µ ∈ riM (ri: relative interior), we have following lower bound:

κ(θ) = sup
µ∈M

〈θ, µ〉 − κ∗(µ) (4)

κ(θ) = log
X

x∈X

exp{〈θ, φ(x)〉}
p(x; θ)

p(x; θ)

≥
X

x∈X
log

`exp{〈θ, φ(x)〉}
p(x; θ)

´
p(x; θ)

=
X

x∈X
〈θ, φ(x)〉p(x; θ)−

X

x∈X
log(p(x; θ))p(x; θ)

= E〈θ, φ(x)〉 − E[log(p(x; θ))] = 〈θ, µ〉 − κ∗(µ).

The inequality follows from Jensen’s inequality, and the last equality follows from
E(φ(x)) = µ and κ∗(µ) = E[log(p(x; θ(µ)))], the negative entropy of distribution
p(x; θ).
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Why variational method?

• Variational representation turns the problem of calculating intractable summation/integrals
to optimization problem (finding lower bound of κ over M).

• The problem of computing mean parameters can be solved simultaneously.

Two main difficulties:

• The constraint set M of realizable mean parameters is difficult to characterize in
an explicit manner.

• κ∗(µ) is lack of explicit form and needs proper approximation.
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Mean value estimation

• µ is obtained by solving the optimization problem in (4).
• However, the dual function κ∗ lacks an explicit form in many cases.
• We restrict the choice of µ to a tractable subset Mt(H) of M(G), where H is the

tractable subgraph of G. The lower bound in (4) will then be computable.
• The solution of the optimization problem

sup
µ∈Mt(H)

{〈µ, θ〉 − κ∗H(µ)}

specifies optimal approximation µ̃t of µ.
• The optimal µ̃t, in fact, minimizes the Kullback-Leibler divergence between the

tractableMt and the target constraintM, and KL divergence between their natural
parameter spaces as well.
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Ising model on Graph: Approximation of κ∗

Exp: Ising model on Graph: Approximation of κ∗

Assume the tractable graph H0 is fully disconnected, then the mean value parameter
set is

M0(H0) = {(µs, µst)|0 ≤ µs ≤ 1, µst = µsµt}
Here, µs = p(xs = 1) and µst = p(xs = 1, xt = 1) = µsµt. So, the distribution on
H0 is fully factorizable.

Deriving from Bernoulli distribution,

κ∗H0
(µ) =

X

s∈V

[µs log µs + (1− µs) log(1− µs)].

By (4),

κ(θ) = max
{µs}∈[0,1]n

˘ X

s∈V

θsµs+
X

(s,t)∈E

θstµsµt−
X

s∈V

[µs log µs+(1−µs) log(1−µs)]
¯

.

(5)
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After taking gradient and setting it to zero, we have following updates for µ:

logit(µs) ← θs +
X

t∈N (s)

θstµt. (6)

Apply (6) iteratively (coordinate ascent) to each node until convergence is reached.
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Applications to ERGM

Dependence Graph

• GY is a graph with m actors and n = m(m−1)
2 dyads

• Construct a dependence graph DY to describe the dependence structure of GY :
DY = G(V (D), E(D)).
– Each dyad (i, j), i < j on G is an actor on D.
– Each actor (ij) ∈ V (D) has a binary variable yij.
– Each edge on D exists if (ij) and (kl) as actors on DY share a common value,

i.e (ij) and (kl) as dyads on GY share a node.
• Frank and Strauss, 1986.
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Figure 1: Dependence Graph D
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Exp: Erdos-Renyi Model: For an undirected random graph Y = {Yij}, all dyads
are mutually independent, so the dependency graph D is fully disconnected. Each
yij, (ij) ∈ D(V ) is a Bernoulli random variable. The model can be written as

log[Pθ(Y = y)] =
X

i<j

θijyij − κ(θ,Y), y ∈ Y.

Calculating entropy of Bernoulli distribution, we have

κ∗(µ) =
X

i<j

[µij log(µij) + (1− µij) log(1− µij)], (7)

where µij = P (Yij = 1). Then,

κ(θ) = sup
µ∈M

{〈θ, µ〉 − κ∗(µ)} =
X

i<j

log(1 + exp(θij)),

when θij = log(
µij

1−µij
).
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2-star ERGM model

Analogous to Ising model, on dependence graph D = G(V (D), E(D)),

log P (Y, θ) =
X

s∈V (D)

θsys +
X

(s,t)∈E(D)

θstysyt − κ(θ), s : (ij) ∈ V (G).

If θs = η1, s ∈ V and θst = η2, (s, t) ∈ E,

log P (Y, η) = {η1

X

i<j

yij + η2

X

i

X

j,k>i

yijyik − κ(η)},

which corresponds to the canonical 2-star model.
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Given a graph GY with 6 actors and its dependency graph DY with 15 nodes.

For Ising model

log p(x, θ) = {
X

s∈VD

θsys +
X

(s,t)∈ED

θstysyt − κ(θ)},
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Compare µvar obtained from naive mean field algorithm to µmcmc obtained from
MCMC samples for fixed θ’s.

θst = 0.2, ∀ s,t
(ij):s θs µmcmc

s µvar
s

12 0.5 0.811 0.848
13 -0.5 0.666 0.671
14 0.5 0.852 0.848
15 -0.5 0.665 0.684
16 0.5 0.834 0.846
23 -0.5 0.671 0.671
24 0.5 0.831 0.848
25 -0.5 0.672 0.683
26 0.5 0.854 0.846
34 -0.5 0.672 0.671
35 0.5 0.855 0.837
36 -0.5 0.683 0.668
45 0.5 0.849 0.846
46 -0.5 0.672 0.683
56 0.0 0.737 0.772
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For 2-star model, let θs = η1 ∈ [−2, 2] and θst = η2 ∈ [−2, 2]. µ = P (xs = 1), ∀s.

Compare µvar(η1, η2) with µmcmc.
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Figure 2: µMCMC vs. µvar
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Parameter estimation by variational inference

1. Start with θ(0)

2. Estimate eµ(θ) from naive mean field algorithm
3. Calculate κ(θ) = 〈θ, eµ〉 − κ∗(eµ) and log-likelihood l(θ, y). Also, calculate
∇κ(θ) = Eθ(φ(x)) and ∇l(θ, y) = φ(x)− Eθ(φ(x)).

4. Update θ by gradient ascent:

eθ(n+1) = eθ(n) + γ ×∇l(θ(n), y), γ → 0.

5. Iterate until eθ converges.
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Simulation study

Figure 3: A sample graph with 6 edges and 12 2-stars

2-star ERGM η1 η2

MLE -1.69 0.39
MCMC-MLE -1.74 0.40

MPLE -7.54 2.18
Var-MLE -1.99 0.465
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Figure 4: Convergence of Var-MLE
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Discussion and Future work

Future work:

• Better approximation of A∗:
– Structured mean field algorithm
– Bethe entropy approximation
– Clustered variational method

• Extension to general ERGM: clustering structure of dependence graph; constraint
space

• Continuous graph: Gaussian random field
• Curved-exponential family
• Hybrid of MCMC and variational methods
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Thanks for your attention!


