Using Potential Games to Parameterize ERG Models

Carter T. Butts

Department of Sociology and

Institute for Mathematical Behavioral Sciences

University of California, Irvine buttsc@uci.edu

This work was supported in part by NSF award CMS-0624257 and ONR award N00014-08-1-1015.

The Problem of Complex Dependence

- Many human systems exhibit complex patterns of dependence
 - Nontrivial coupling among system elements
 - Particularly true within relational systems (i.e., social networks)
- A methodological and theoretical challenge
 - How to capture dependence without losing inferential tractability?
 - Not a new problem: also faced, e.g.,
 by researchers in statistical physics



Challenge: Modeling Reality without Sacrificing Data

- ► How do we work with models which have non-trivial dependence?
- Can compare behavior of dependent-process models against stylized facts, but this has limits....
 - Not all models lead to clean/simple conditional or marginal relationships
 - > Often impossible to disentangle nonlinearly interacting mechanisms on this basis
 - > Very data inefficient: throws away much of the information content
 - Often need (very) large data sets to get sufficient power (which may not exist)
 - ◊ Collection of massive data sets often prohibitively costly
 - Many systems of interest are size-limited; studying only large systems leads to sampling bias
- Ideally, would like a framework which allows principled inference/model comparison without sacrificing (much) data

Our Focus: Stochastic Models for Social (and Other) Networks

- General problem: need to model graphs with varying properties
- ► Many *ad hoc* approaches:
 - ▷ Conditional uniform graphs (Erdös and Rényi, 1960)
 - Bernoulli/independent dyad models (Holland and Leinhardt, 1981)
 - Biased nets (Rapoport, 1949a;b; 1950)
 - Preferential attachment models (Simon, 1955; Barabási and Albert, 1999)
 - Geometric random graphs (Hoff et al., 2002)
 - Agent-based/behavioral models (Carley (1991); Hummon and Fararo (1995))
- ► A more general scheme: discrete exponential family models (ERGs)
 - General, powerful, leverages existing statistical theory (e.g., Barndorff-Nielsen (1978);
 Brown (1986); Strauss (1986))
 - (Fairly) well-developed simulation, inferential methods (e.g., Snijders (2002);
 Hunter and Handcock (2006))
- Today's focus model parameterization

- Assume G = (V, E) to be the graph formed by edge set E on vertex set V
 - \triangleright Here, we take |V| = N to be fixed, and assume elements of V to be uniquely identified
 - ▷ If $E \subseteq \{\{v, v'\} : v, v' \in V\}$, *G* is said to be *undirected*; *G* is *directed* iff $E \subseteq \{(v, v') : v, v' \in V\}$
 - $\triangleright \{v, v\}$ or (v, v) edges are known as *loops*; if *G* is defined per the above and contains no loops, *G* is said to be *simple*
 - \diamond Note that multiple edges are already banned, unless *E* is allowed to be a multiset
- Other useful bits
 - \triangleright *E* may be random, in which case G = (V, E) is a random graph
 - ▷ Adjacency matrix $\mathbf{Y} \in \{0, 1\}^{N \times N}$ (may also be random); for *G* random, will usually use notation \mathbf{y} for adjacency matrix of realization *g* of *G*
 - ▷ \mathbf{y}_{ij}^+ is used to denote the matrix \mathbf{y} with the i, j entry forced to 1; \mathbf{y}_{ij}^- is the same matrix with the i, j entry forced to 0

Exponential Families for Random Graphs

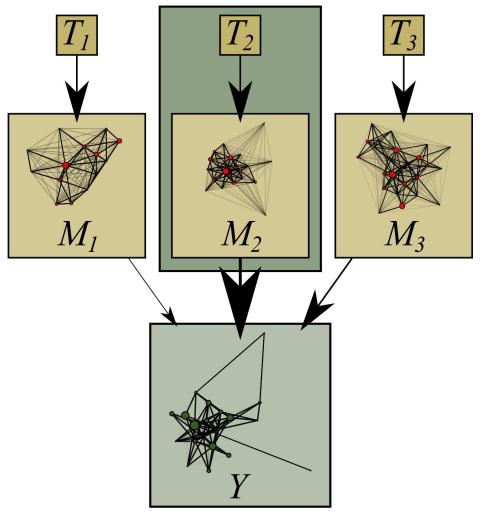
For random graph G w/countable support G, pmf is given in ERG form by

$$\Pr(G = g | \theta) = \frac{\exp\left(\theta^T \mathbf{t}(g)\right)}{\sum_{g' \in \mathcal{G}} \exp\left(\theta^T \mathbf{t}(g')\right)} I_{\mathcal{G}}(g)$$
(1)

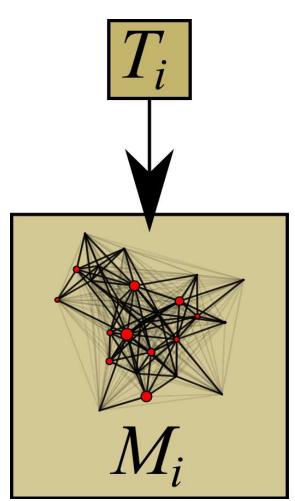
► $\theta^T \mathbf{t}$: linear predictor

- $\triangleright \mathbf{t}: \mathcal{G} \to \mathbb{R}^m$: vector of sufficient statistics
- $\triangleright \ \theta \in \mathbb{R}^m$: vector of parameters
- $\triangleright \sum_{g' \in \mathcal{G}} \exp(\theta^T \mathbf{t}(g'))$: normalizing factor (aka partition function, Z)
- Intuition: ERG places more/less weight on structures with certain features, as determined by t and θ
 - \triangleright Model is complete for pmfs on \mathcal{G} , few constraints on t

- Important feature of ERGs is availability of inferential theory
 - Need to discriminate among competing theories
 - May need to assess quantitative variation in effect strengths, etc.
- ► Basic logic
 - Derive ERG parameterization from prior theory
 - Assess fit to observed data
 - Select model/interpret parameters
 - Update theory and/or seek low-order approximating models
 - Repeat as necessary



- The ERG form is a way of representing distributions on G, not a model in and of itself!
- Critical task: derive model statistics from prior theory
- Several approaches here we introduce a new one....



A New Direction: Potential Games

Most prior parameterization work has used dependence hypotheses

- Define the conditions under which one relationship could affect another, and hope that this is sufficiently reductive
- Complete agnosticism regarding underlying mechanisms could be social dynamics, unobserved heterogeneity, or secret closet monsters

A choice-theoretic alternative?

- ▷ In some cases, reasonable to posit actors with some control over edges (e.g., out-ties)
- Existing theory often suggests general form for utility
- ▷ Reasonable behavioral models available (e.g., multinomial choice)

► The link between choice models and ERGs: *potential games*

- Increasingly wide use in economics, engineering
- ▷ Equilibrium behavior provides an alternative way to parameterize ERGs

Potential Games and Network Formation Games

► (Exact) Potential games (Monderer and Shapley, 1996)

▷ Let *X* by a strategy set, *u* a vector utility functions, and *V* a set of players. Then (V, X, u) is said to be a *potential game* if $\exists \rho : X \mapsto \mathbb{R}$ such that, for all $i \in V$,

 $u_i(x'_i, x_{-i}) - u_i(x_i, x_{-i}) = \rho(x'_i, x_{-i}) - \rho(x_i, x_{-i})$ for all $x, x' \in X$.

• Consider a simple family of *network formation games* (Jackson, 2006) on \mathcal{Y} :

▷ Each i, j element of Y is controlled by a single player $k \in V$ with finite utility u_k ; can choose $y_{ij} = 1$ or $y_{ij} = 0$ when given an "updating opportunity"

 \diamond We will here assume that *i* controls \mathbf{Y}_{i} , but this is not necessary

- ▷ Theorem: Let (i) (V, \mathcal{Y}, u) in the above form a game with potential ρ ; (ii) players choose actions via a logistic choice rule; and (iii) updating opportunities arise sequentially such that every (i, j) is selected with positive probability, and (i, j) is selected independently of the current state of **Y**. Then **Y** forms a Markov chain with equilibrium distribution $Pr(\mathbf{Y} = \mathbf{y}) \propto \exp(\rho(\mathbf{y}))$, in the limit of updating opportunities.
- One can thus obtain an ERG as the long-run behavior of a strategic process, and parameterize in terms of the hypothetical underlying utility functions

Proof of Potential Game Theorem

Assume an updating opportunity arises for y_{ij} , and assume that player k has control of y_{ij} . By the logistic choice assumption,

$$\Pr\left(\mathbf{Y} = \mathbf{y}_{ij}^{+} | \mathbf{Y}_{ij}^{c} = \mathbf{y}_{ij}^{c}\right) = \frac{\exp\left(u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right)}{\exp\left(u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right) + \exp\left(u_{k}\left(\mathbf{y}_{ij}^{-}\right)\right)}$$

$$= \left[1 + \exp\left(u_{k}\left(\mathbf{y}_{ij}^{-}\right) - u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right)\right]^{-1}.$$
(2)
(3)

Since u, \mathcal{Y} form a potential game, $\exists \rho : \rho\left(\mathbf{y}_{ij}^{+}\right) - \rho\left(\mathbf{y}_{ij}^{-}\right) = u_k\left(\mathbf{y}_{ij}^{+}\right) - u_k\left(\mathbf{y}_{ij}^{-}\right) \forall k, (i, j), \mathbf{y}_{ij}^{c}$. Therefore, $\Pr\left(\mathbf{Y} = \mathbf{y}_{ij}^{+} \middle| \mathbf{Y}_{ij}^{c} = \mathbf{y}_{ij}^{c}\right) = \left[1 + \exp\left(\rho\left(\mathbf{y}_{ij}^{-}\right) - \rho\left(\mathbf{y}_{ij}^{+}\right)\right)\right]^{-1}$. Now assume that the updating opportunities for \mathbf{Y} occur sequentially such that (i, j) is selected independently of \mathbf{Y} , with positive probability for all (i, j). Given arbitrary starting point $\mathbf{Y}^{(0)}$, denote the updated sequence of matrices by $\mathbf{Y}^{(0)}, \mathbf{Y}^{(1)}, \ldots$. This sequence clearly forms an irreducible and aperiodic Markov chain on \mathcal{Y} (so long as ρ is finite); it is known that this chain is a Gibbs sampler on \mathcal{Y} with equilibrium distribution $\Pr(\mathbf{Y} = \mathbf{y}) = \frac{\exp(\rho(\mathbf{y}))}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp(\rho(\mathbf{y}'))}$, which is an ERG with potential ρ . By the ergodic theorem, then $\mathbf{Y}^{(i)} \xrightarrow[i \to \infty]{} ERG(\rho(\mathbf{Y}))$. QED.

Some Potential Game Properties

Game-theoretic properties

- ▷ Local maxima of ρ correspond to Nash equilibria in pure strategies; global maxima of ρ correspond to stochastically stable Nash equilibria in pure strategies
 - $\diamond~$ At least one maximum must exist, since ρ is bounded above for any given $\theta~$
- Fictitious play property; Nash equilibria compatible with best responses to mean strategy profile for population (interpreted as a mixed strategy)
- Implications for simulation, model behavior
 - \triangleright Multiplying θ by a constant $\alpha \to \infty$ will drive the system to its SSNE
 - Likewise, best response dynamics (equivalent to conditional stepwise ascent) always leads to a NE
 - For degenerate models, "frozen" structures represent Nash equilibria in the associated potential game
 - Suggests a social interpretation of degeneracy in at least some cases: either correctly identifies robust social regimes, or points to incorrect preference structure

Building Potentials: Independent Edge Effects

General procedure

- \triangleright Identify utility for actor *i*
- Determine difference in u_i for single
 edge change
- ▷ Find ρ such that utility difference is equal to utility difference for all u_i
- Linear combinations of payoffs
 - $\triangleright \text{ If } u_i \left(\mathbf{y} \right) = \sum_j u_i^{(j)} \left(\mathbf{y} \right), \\ \rho \left(\mathbf{y} \right) = \sum_j \rho_i^{(j)} \left(\mathbf{y} \right)$
- Edge payoffs (homogeneous)

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij}$$
$$\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \theta$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j} y_{ij}$$

 \triangleright Equivalence: p_1 /Bernoulli density effect

Edge payoffs (inhomogeneous)

$$\triangleright u_{i} (\mathbf{y}) = \theta_{i} \sum_{j} y_{ij}$$
$$\triangleright u_{i} (\mathbf{y}_{ij}^{+}) - u_{i} (\mathbf{y}_{ij}^{-}) = \theta_{i}$$
$$\triangleright \rho (\mathbf{y}) = \sum_{i} \theta_{i} \sum_{j} y_{ij}$$

- \triangleright Equivalence: p_1 expansiveness effect
- Edge covariate payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij} x_{ij}$$
$$\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \theta x_{ij}$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j} y_{ij} x_{ij}$$

 Equivalence: Edgewise covariate effects (netlogit)

Building Potentials: Dependent Edge Effects

Reciprocity payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij} y_{ji}$$
$$\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \theta y_{ji}$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j < i} y_{ij} y_{ji}$$

- \triangleright Equivalence: p_1 reciprocity effect
- ► 3-Cycle payoffs

$$\triangleright u_{i} (\mathbf{y}) = \theta \sum_{j \neq i} \sum_{k \neq i,j} y_{ij} y_{jk} y_{ki}$$
$$\triangleright u_{i} \left(\mathbf{y}_{ij}^{+} \right) - u_{i} \left(\mathbf{y}_{ij}^{-} \right) = \theta \sum_{k \neq i,j} y_{jk} y_{ki}$$
$$\triangleright \rho (\mathbf{y}) = \frac{\theta}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} y_{ij} y_{jk} y_{ki}$$

▷ Equivalence: Cyclic triple effect

Transitive completion payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j \neq i} \sum_{k \neq i,j} \begin{bmatrix} y_{ij}y_{ki}y_{kj} + y_{ij}y_{ik}y_{jk} \\ + y_{ij}y_{ik}y_{kj} \end{bmatrix}$$

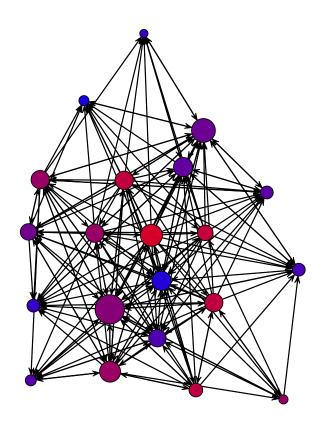
 $\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \\ \theta \sum_{k \neq i,j} \left[y_{ki}y_{kj} + y_{ik}y_{jk} + y_{ik}y_{kj}\right]$

$$\triangleright \ \rho \left(\mathbf{y} \right) = \theta \sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} y_{ij} y_{ik} y_{kj}$$

Equivalence: Transitive triple effect

Empirical Example: Advice-Seeking Among Managers

- Sample empirical application from Krackhardt (1987): self-reported advice-seeking among 21 managers in a high-tech firm
 - Additional covariates: friendship, authority (reporting)
- Demonstration: selection of potential behavioral mechanisms via ERGs
 - Models parameterized using utility components
 - Model parameters estimated using maximum likelihood (Geyer-Thompson)
 - Model selection via AIC



Advice-Seeking ERG – Model Comparison

► First cut: models with independent dyads:

	Deviance	Model df	AIC	Rank
Edges	578.43	1	580.43	7
Edges+Sender	441.12	21	483.12	4
Edges+Covar	548.15	3	554.15	5
Edges+Recip	577.79	2	581.79	8
Edges+Sender+Covar	385.88	23	431.88	2
Edges+Sender+Recip	405.38	22	449.38	3
Edges+Covar+Recip	547.82	4	555.82	6
Edges+Sender+Covar+Recip	378.95	24	426.95	1

Elaboration: models with triadic dependence:

	Deviance	Model df	AIC	Rank
Edges+Sender+Covar+Recip	378.95	24	426.95	4
Edges+Sender+Covar+Recip+CycTriple	361.61	25	411.61	2
Edges+Sender+Covar+Recip+TransTriple	368.81	25	418.81	3
Edges+Sender+Covar+Recip+CycTriple+TransTriple	358.73	26	410.73	1

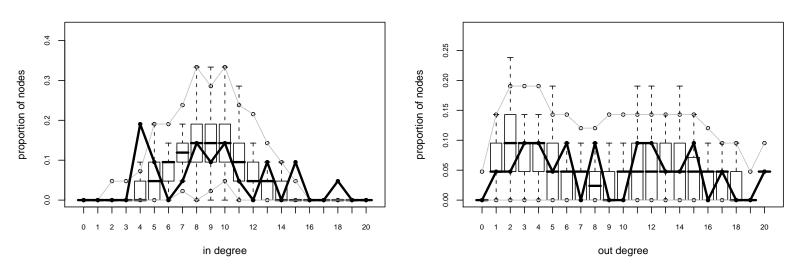
Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates), with additional effects for reciprocated, cycle-completing, and transitive-completing edges.

Advice-Seeking ERG – AIC Selected Model

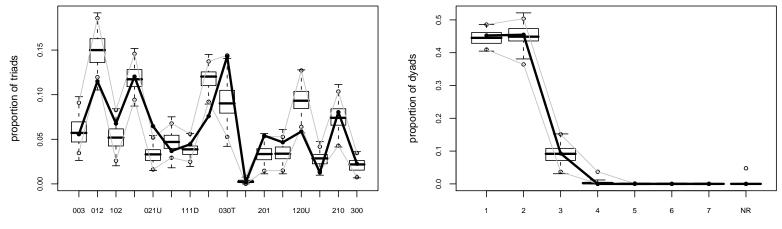
Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$		Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$	
Edges	-1.022	0.137	0.0000	* * *	Sender14	-1.513	0.231	0.0000	* * *
Sender2	- 2.039	0.637	0.0014	* *	Sender15	16.605	0.336	0.0000	* * *
Sender3	0.690	0.466	0.1382		Sender16	-1.472	0.232	0.0000	* * *
Sender4	-0.049	0.441	0.9112		Sender17	-2.548	0.197	0.0000	* * *
Sender5	0.355	0.495	0.4734		Sender18	1.383	0.214	0.0000	* * *
Sender6	-4.654	1.540	0.0025	* *	Sender19	- 0.601	0.190	0.0016	* *
Sender7	-0.108	0.375	0.7726		Sender20	0.136	0.161	0.3986	
Sender8	-0.449	0.479	0.3486		Sender21	0.105	0.210	0.6157	
Sender9	0.393	0.496	0.4281		Reciprocity	0.885	0.081	0.0000	* * *
Sender10	0.023	0.555	0.9662		Edgecov (Reporting)	5.178	0.947	0.0000	* * *
Sender11	- 2.864	0.721	0.0001	* * *	Edgecov (Friendship)	1.642	0.132	0.0000	* * *
Sender12	- 2.736	0.331	0.0000	* * *	CycTriple	-0.216	0.013	0.0000	* * *
Sender13	-0.986	0.194	0.0000	* * *	TransTriple	0.090	0.003	0.0000	* * *
Null Dev 582.24; Res Dev 358.73 on 394 df									

Some observations...

- Arbitrary edges are costly for most actors
- Edges to friends and superiors are "cheaper" (or even positive payoff)
- ▷ Reciprocating edges, edges with transitive completion are cheaper...
- ▷ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?



Goodness-of-fit diagnostics



triad census

minimum geodesic distance

Model refinement

- Boodness-of-fit is not unreasonable, but some improvement is clearly possible
- Could refine existing model (e.g., by adding covariates) or propose more alternatives

Replication on new cases

- ▷ Given a smaller set of candidates, would replicate on new organizations
- ▷ May lead to further refinement/reformulation

Simplification

- ▷ Given a model family that works well, can it be simplified w/out losing too much?
- Seek the smallest model which captures essential properties of optimal model;
 general behavior can then be characterized (hopefully)

- Models for non-trivial networks pose non-trivial problems
 - Many ways to describe dependence among elements
 - Once one leaves simple cases, not always clear where to begin
- Potential games for ERG parameterization
 - Allow us to derive random cross-sectional behavior from strategic interaction
 - Provide sufficient conditions for ERG parameters to be interpreted in terms of preferences
 - Allows for testing of competing behavioral models (assuming scope conditions are met!)
- ► Approach seems promising, but many questions remain
 - Can we characterize utilities which lead to identifiable models?
 - How can we leverage other properties of potential games?

1 References

- Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. *Science*, 206:509–512.
- Barndorff-Nielsen, O. (1978). *Information and Exponential Families in Statistical Theory*. John Wiley and Sons, New York.
- Brown, L. D. (1986). *Fundamentals of Statistical Exponential Families, with Applications in Statistical Decision Theory*. Institute of Mathematical Statistics, Hayward, CA.
- Carley, K. M. (1991). A theory of group stability. *American* Sociological Review, 56(3):331–354.
- Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. *Public Mathematical Institute of Hungary Academy of Sciences*, 5:17–61.
- Harary, F. (1953). On the notion of balance of a signed graph. *Michigan Mathematical Journal*, 3:37–41.
- Heider, F. (1958). *The Psychology of Interpersonal Relations*. John Wiley and Sons, New York.

- Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. *Journal of the American Statistical Association*, 97(460):1090–1098.
- Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs (with discussion). *Journal of the American Statistical Association*, 76(373):33–50.
- Hummon, N. P. and Fararo, T. J. (1995). Assessing hierarchy and balance in dynamic network models. *Journal of Mathematical Sociology*, 20:145–159.
- Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks. *Journal of Computational and Graphical Statistics*, 15:565–583.
- Jackson, M. (2006). A survey of models of network formation: Stability and efficiency. In Demange, G. and Wooders, M., editors, *Group Formation Economics: Networks, Clubs, and Coalitions*. Cambridge University Press, Cambridge.
- Krackhardt, D. (1987). Cognitive social structures. *Social Networks*, 9(2):109–134.
- Monderer, D. and Shapley, L. S. (1996). Potential games. *Games and Economic Behavior*, 14:124–143.

- Rapoport, A. (1949a). Outline of a probabilistic approach to animal sociology I. *Bulletin of Mathematical Biophysics*, 11:183– 196.
- Rapoport, A. (1949b). Outline of a probabilistic approach to animal sociology II. *Bulletin of Mathematical Biophysics*, 11:273–281.
- Rapoport, A. (1950). Outline of a probabilistic approach to animal sociology III. *Bulletin of Mathematical Biophysics*, 12:7– 17.
- Simon, H. A. (1955). On a class of skew distribution functions. *Biometrika*, 42:425–440.
- Snijders, T. A. B. (2002). Markov Chain Monte Carlo estimation of exponential random graph models. *Journal of Social Structure*, 3(2).
- Strauss, D. (1986). On a General Class of Models for Interaction. *SIAM Review*, 28(4):513–527.