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iy The Problem of Complex
Dependence

» Many human systems exhibit
complex patterns of dependence

> Nontrivial coupling among system
elements

> Particularly true within relational

systems (i.e., social networks)

» A methodological and
theoretical challenge

> How to capture dependence without
losing inferential tractability?

> Not a new problem: also faced, e.g.,

by researchers in statistical physics
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""W Challenge: Modeling Reality
without Sacrificing Data

» How do we work with models which have non-trivial dependence?

» Can compare behavior of dependent-process models against stylized
facts, but this has limits....

> Not all models lead to clean/simple conditional or marginal relationships

> Often impossible to disentangle nonlinearly interacting mechanisms on this basis
> Very data inefficient: throws away much of the information content

> Often need (very) large data sets to get sufficient power (which may not exist)

¢ Collection of massive data sets often prohibitively costly
o Many systems of interest are size-limited; studying only large systems leads to sampling

bias

» l|deally, would like a framework which allows principled
Inference/model comparison without sacrificing (much) data
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MM} Our Focus: Stochastic Models for Social
(and Other) Networks

» General problem: need to model graphs with varying properties

» Many ad hoc approaches:
> Conditional uniform graphs (Erd6s and Rényi, 1960)
> Bernoulli/independent dyad models (Holland and Leinhardt, 1981)
> Biased nets (Rapoport, 1949a;b; 1950)
> Preferential attachment models (Simon, 1955; Barabasi and Albert, 1999)
> Geometric random graphs (Hoff et al., 2002)
> (1

Agent-based/behavioral models (Cariey (1991); Hummon and Fararo (1995))

» A more general scheme: discrete exponential family models (ERGS)

> General, powerful, leverages existing statistical theory (e.g., Barndorff-Nielsen (1978);
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Brown (1986); Strauss (1986))

> (Fairly) well-developed simulation, inferential methods (e.g., Snijders (2002);
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Hunter and Handcock (2006))
» Today’s focus — model parameterization
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f» Basic Notation

» Assume G = (V, E) to be the graph formed by edge set F on vertex set V/
> Here, we take |V | = N to be fixed, and assume elements of V' to be uniquely
Identified
> If B C {{v,v'} :v,v" € V}, Gis said to be undirected; G is directed iff
EC{(v,v):v,0 €V}
> {v,v} or (v,v) edges are known as loops; if G is defined per the above and
contains no loops, G is said to be simple

¢ Note that multiple edges are already banned, unless F is allowed to be a multiset

» Other useful bits

> E may be random, in which case G = (V, F) is a random graph

> Adjacency matrix Y € {0, 1}V *" (may also be random); for G random, will
usually use notation y for adjacency matrix of realization g of G

> y:;. is used to denote the matrix y with the i, j entry forced to 1; y;. is the same
matrix with the ¢, 5 entry forced to 0
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""WW’ Exponential Families for
Random Graphs

» For random graph G w/countable support G, pmf is given in ERG form by

exp (HTt(g))

Pr(G = g|f) = > eq exp (07t(g"))

Ig(g) (1)

» 07't: linear predictor
> t : G — R": vector of sufficient statistics
> 6 € R™: vector of parameters
> > eg exp (67t(g')): normalizing factor (aka partition function, Z)
» Intuition: ERG places more/less weight on structures with certain features,
as determined by t and 6

> Model is complete for pmfs on G, few constraints on t
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""W Inference with ERGs

» Important feature of ERGs is
availability of inferential theory

> Need to discriminate among
competing theories

> May need to assess quantitative
variation in effect strengths, etc.

» Basic logic

> Derive ERG parameterization from
prior theory

> Assess fit to observed data
> Select model/interpret parameters

> Update theory and/or seek low-order
approximating models

> Repeat as necessary
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"'IHWMP Parameterizing ERGs

» The ERG form is a way of representing
distributions on G, not a model in and of
itself!

» Critical task: derive model statistics from
prior theory

» Several approaches — here we introduce a
new one....
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iy A New Direction: Potential
Games

» Most prior parameterization work has used dependence hypotheses

> Define the conditions under which one relationship could affect another, and hope that this
is sufficiently reductive

> Complete agnosticism regarding underlying mechanisms — could be social dynamics,

unobserved heterogeneity, or secret closet monsters

» A choice-theoretic alternative?

> In some cases, reasonable to posit actors with some control over edges (e.g., out-ties)
> EXxisting theory often suggests general form for utility

> Reasonable behavioral models available (e.g., multinomial choice)

» The link between choice models and ERGs: potential games

> Increasingly wide use in economics, engineering

> Equilibrium behavior provides an alternative way to parameterize ERGs
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""WM’ Potential Games and Network
Formation Games

» (Exact) Potential games (Monderer and Shapiey, 1996)
> Let X by a strategy set, v a vector utility functions, and V' a set of players. Then (V, X, u) is

said to be a potential game if 3 p : X — R such that, for all i € V,

U; (:U;,x_i) —u; (T, x—3) = p (w;,w_z') —p(xs,x_;) forall x, 2’ € X.

» Consider a simple family of network formation games (Jackson, 2006) on V.

> Each i, 7 element of Y is controlled by a single player & € V' with finite utility u;; can choose
y;; = 1 or y;; = 0 when given an “updating opportunity”
o We will here assume that 7 controls Y;., but this is not necessary

> Theorem: Let (i) (V, ), u) in the above form a game with potential p; (ii) players choose
actions via a logistic choice rule; and (iii) updating opportunities arise sequentially such that
every (i, j) is selected with positive probability, and (7, j) is selected independently of the
current state of Y. Then Y forms a Markov chain with equilibrium distribution
Pr(Y =y) x exp(p(y)), in the limit of updating opportunities.

» One can thus obtain an ERG as the long-run behavior of a strategic process, and
parameterize in terms of the hypothetical underlying utility functions
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""WM’ Proof of Potential Game
Theorem

Assume an updating opportunity arises for y;;, and assume that player £ has control of y;;. By the
logistic choice assumption,

Pr (Y :y;; |Yicj :yicj) =

( ,
exp (e () o0 (o (v2) |
(1o (e () = e (+5))]

Since u, Y form a potential game, 3 p : p (y;;) —p (y;) = uy, (y:;) — ug, (y;) Vk, (i,5), ¥

—1

Therefore, Pr (Y = y;;. Y7 = ygj) = [1 + exp (p (y&) —p (y;;))] . Now assume that the
updating opportunities for Y occur sequentially such that (¢, 7) is selected independently of Y, with
positive probability for all (i, j). Given arbitrary starting point Y (9), denote the updated sequence of

matrices by YO Y1) . This sequence clearly forms an irreducible and aperiodic Markov chain
on Y (so long as p is finite); it is known that this chain is a Gibbs sampler on Y with equilibrium
distribution Pr(Y =y) = exp(p(y)) which is an ERG with potential p. By the ergodic

>yrey exp(p(y’))’
theorem, then Y(¥) —— ERG(p(Y)). QED.
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""WW’ Some Potential Game
Properties

» Game-theoretic properties

> Local maxima of p correspond to Nash equilibria in pure strategies; global
maxima of p correspond to stochastically stable Nash equilibria in pure strategies

¢ At least one maximum must exist, since p is bounded above for any given 6
> Fictitious play property; Nash equilibria compatible with best responses to mean
strategy profile for population (interpreted as a mixed strategy)

» Implications for simulation, model behavior

> Multiplying 8 by a constant o« — oo will drive the system to its SSNE

¢ Likewise, best response dynamics (equivalent to conditional stepwise ascent) always
leads to a NE
> For degenerate models, “frozen” structures represent Nash equilibria in the
associated potential game

¢ Suggests a social interpretation of degeneracy in at least some cases: either correctly
identifies robust social regimes, or points to incorrect preference structure
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iy Building Potentials:
Independent Edge Effects

» General procedure _
L , » Edge payoffs (inhomogeneous)
> Identify utility for actor ¢

> Determine difference in u; for single > i (y) = 0i 2.5 Uiy
+ -\ — Q9.
edge change > u; (yij) — U; (yij) =0,
> Find p such that utility difference is equal > p(y) =2_; 0 Zj Yij
to utility difference for all u; > Equivalence: p; expansiveness effect
» Linear combinations of payoffs » Edge covariate payoffs
> i (y) =3, ut? (y) > i (y) =02 vijTij
Y J ) ’
; vt — (v ) = 99
p(y) =3, (y) > i (vi5) = wi (vi5) = 0
> p(y) =02, Zj YijLig
» Edge payoffs (homogeneous) > Equivalence: Edgewise covariate effects
> wi (¥) =032, vi5 (netlogit)

o) () =
> p(y) =022 vij

> Equivalence: pi/Bernoulli density effect
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iy Building Potentials:
Dependent Edge Effects

» Reciprocity payoffs N _
» Transitive completion payoffs
> u; (y) =02, Yijyji

N N > u; (y) =
s (55) i (v5) = o0
Vg Yig Y 0 .3 YijYki¥ki + YijYik Yk
> P (Y) =020 2 5<i YidYi Ik +Yij YikYk;
> Equivalence: p; reciprocity effect N B
> Uy (yij) — Uj (yij) —

» 3-Cycle payoffs 0> jri i |YkiVkj + YikYsk + YikUkj)

> i (¥) =02 505 D ppi j YigVikYki > p(Y) =022 Do 2oksta,j YiiYikVhj

> ug y;; — Ui (Y, ) = sz;éi,j YikYki > Equivalence: Transitive triple effect

q

0
> p(y) =32 Zj;ﬁz’ Zk¢i,j YijYjkYki

> Equivalence: Cyclic triple effect
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MW} Empirical Example: Advice-Seeking Among
Managers

» Sample empirical application from
Krackhardt (1987): self-reported
advice-seeking among 21 managers in a
high-tech firm

> Additional covariates: friendship, authority

(reporting)

» Demonstration: selection of potential
behavioral mechanisms via ERGs

> Models parameterized using utility components
> Model parameters estimated using maximum
likelihood (Geyer-Thompson)

> Model selection via AIC
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""WW’ Advice-Seeking ERG — Model
Comparison

» First cut: models with independent dyads:

Deviance Model df AIC Rank
Edges 578.43 1 580.43 7
Edges+Sender 441.12 21 483.12 4
Edges+Covar 548.15 3 554.15 5
Edges+Recip 577.79 2 581.79 8
Edges+Sender+Covar 385.88 23 431.88 2
Edges+Sender+Recip 405.38 22 449.38 3
Edges+Covar+Recip 547.82 4 555.82 6
Edges+Sender+Covar+Recip 378.95 24 426.95 1
» Elaboration: models with triadic dependence:
Deviance Model df AIC Rank
Edges+Sender+Covar+Recip 378.95 24 426.95 4
Edges+Sender+Covar+Recip+CycTriple 361.61 25 411.61 2
Edges+Sender+Covar+Recip+TransTriple 368.81 25 418.81 3
Edges+Sender+Covar+Recip+CycTriple+TransTriple 358.73 26 41 0.73 1

» Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates),
with additional effects for reciprocated, cycle-completing, and transitive-completing edges.
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«WM}

Advice-Seeking ERG — AIC
Selected Model

Effect 0 s.e. Pr(> |Z]) Effect 6 s.e. Pr(> |Z))

Edges —1.022 0.137 0.0000 * ok Senderl4 —1.513 0.231 0.0000 * ok ok
Sender2 —2.039 0.637 0.0014 * % Sender15 16.605 0.336 0.0000 * ok ok
Sender3 0.690 0.466 0.1382 Sender16 —1.472 0.232 0.0000 * ok ok
Sender4 —0.049 0.441 0.9112 Senderl7 —2.548 0.197 0.0000 * ok ok
Sender5 0.355 0.495 0.4734 Senderl8 1.383 0.214 0.0000 * ok ok
Sender6 —4.654 1.540 0.0025 * * Senderl9 —0.601 0.190 0.0016 * %
Sender7 —0.108 0.375 0.7726 Sender20 0.136 0.161 0.3986
Sender8 —0.449 0.479 0.3486 Sender21 0.105 0.210 0.6157
Sender9 0.393 0.496 0.4281 Reciprocity 0.885 0.081 0.0000 * ok ok

Sender10 0.023 0.555 0.9662 Edgecov (Reporting) 5.178 0.947 0.0000 * ok ok
Senderll —2.864 0.721 0.0001 * Edgecov (Friendship) 1.642 0.132 0.0000 * kK
Senderl2 —2.736 0.331 0.0000 * * CycTriple —0.216 0.013 0.0000 * ok ok
Senderl3 —0.986 0.194 0.0000 * TransTriple 0.090 0.003 0.0000 * kK

Null Dev 582.24; Res Dev 358.73 on 394 df

» Some observations...

> Arbitrary edges are costly for most actors
> Edges to friends and superiors are “cheaper” (or even positive payoff)
> Reciprocating edges, edges with transitive completion are cheaper...

> ...but edges which create (in)cycles are more expensive; a sign of hierarchy?
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1§» Model Adequacy Check

Goodness—of-fit diagnostics
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""WMP Where Would One Go Next?

» Model refinement
> Goodness-of-fit is not unreasonable, but some improvement is clearly possible
> Could refine existing model (e.g., by adding covariates) or propose more

alternatives

» Replication on new cases
> Given a smaller set of candidates, would replicate on new organizations

> May lead to further refinement/reformulation

» Simplification
> Given a model family that works well, can it be simplified w/out losing too much?

> Seek the smallest model which captures essential properties of optimal model,

general behavior can then be characterized (hopefully)
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i Summary

» Models for non-trivial networks pose non-trivial problems

> Many ways to describe dependence among elements

> Once one leaves simple cases, not always clear where to begin

» Potential games for ERG parameterization

> Allow us to derive random cross-sectional behavior from strategic interaction

> Provide sufficient conditions for ERG parameters to be interpreted in terms of
preferences

> Allows for testing of competing behavioral models (assuming scope conditions
are met!)

» Approach seems promising, but many questions remain

> Can we characterize utilities which lead to identifiable models?

> How can we leverage other properties of potential games?
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