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The Problem of Complex
Dependence

◮ Many human systems exhibit

complex patterns of dependence

⊲ Nontrivial coupling among system
elements

⊲ Particularly true within relational

systems (i.e., social networks)

◮ A methodological and

theoretical challenge

⊲ How to capture dependence without
losing inferential tractability?

⊲ Not a new problem: also faced, e.g.,

by researchers in statistical physics
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Challenge: Modeling Reality
without Sacrificing Data

◮ How do we work with models which have non-trivial dependence?

◮ Can compare behavior of dependent-process models against stylized

facts, but this has limits....

⊲ Not all models lead to clean/simple conditional or marginal relationships
⊲ Often impossible to disentangle nonlinearly interacting mechanisms on this basis
⊲ Very data inefficient: throws away much of the information content
⊲ Often need (very) large data sets to get sufficient power (which may not exist)

⋄ Collection of massive data sets often prohibitively costly
⋄ Many systems of interest are size-limited; studying only large systems leads to sampling

bias

◮ Ideally, would like a framework which allows principled

inference/model comparison without sacrificing (much) data

Carter T. Butts – p. 3/20



Our Focus: Stochastic Models for Social
(and Other) Networks

◮ General problem: need to model graphs with varying properties

◮ Many ad hoc approaches:

⊲ Conditional uniform graphs (Erdös and Rényi, 1960)
⊲ Bernoulli/independent dyad models (Holland and Leinhardt, 1981)
⊲ Biased nets (Rapoport, 1949a;b; 1950)
⊲ Preferential attachment models (Simon, 1955; Barabási and Albert, 1999)
⊲ Geometric random graphs (Hoff et al., 2002)

⊲ Agent-based/behavioral models (Carley (1991); Hummon and Fararo (1995))

◮ A more general scheme: discrete exponential family models (ERGs)

⊲ General, powerful, leverages existing statistical theory (e.g., Barndorff-Nielsen (1978);
Brown (1986); Strauss (1986))

⊲ (Fairly) well-developed simulation, inferential methods (e.g., Snijders (2002);

Hunter and Handcock (2006))

◮ Today’s focus – model parameterization
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Basic Notation

◮ Assume G = (V, E) to be the graph formed by edge set E on vertex set V

⊲ Here, we take |V | = N to be fixed, and assume elements of V to be uniquely
identified

⊲ If E ⊆
˘

{v, v′} : v, v′ ∈ V
¯

, G is said to be undirected ; G is directed iff
E ⊆

˘

(v, v′) : v, v′ ∈ V
¯

⊲ {v, v} or (v, v) edges are known as loops; if G is defined per the above and
contains no loops, G is said to be simple

⋄ Note that multiple edges are already banned, unless E is allowed to be a multiset

◮ Other useful bits

⊲ E may be random, in which case G = (V, E) is a random graph

⊲ Adjacency matrix Y ∈ {0, 1}N×N (may also be random); for G random, will
usually use notation y for adjacency matrix of realization g of G

⊲ y+
ij is used to denote the matrix y with the i, j entry forced to 1; y−

ij is the same

matrix with the i, j entry forced to 0
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Exponential Families for
Random Graphs

◮ For random graph G w/countable support G, pmf is given in ERG form by

Pr(G = g|θ) =
exp

(

θT
t(g)

)

∑

g′∈G
exp (θT t(g′))

IG(g) (1)

◮ θT
t: linear predictor

⊲ t : G → R
m: vector of sufficient statistics

⊲ θ ∈ R
m: vector of parameters

⊲
∑

g′∈G
exp

(

θT
t(g′)

)

: normalizing factor (aka partition function, Z)

◮ Intuition: ERG places more/less weight on structures with certain features,
as determined by t and θ

⊲ Model is complete for pmfs on G, few constraints on t
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Inference with ERGs

◮ Important feature of ERGs is
availability of inferential theory

⊲ Need to discriminate among
competing theories

⊲ May need to assess quantitative

variation in effect strengths, etc.

◮ Basic logic

⊲ Derive ERG parameterization from
prior theory

⊲ Assess fit to observed data

⊲ Select model/interpret parameters

⊲ Update theory and/or seek low-order
approximating models

⊲ Repeat as necessary
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Parameterizing ERGs

◮ The ERG form is a way of representing
distributions on G, not a model in and of
itself!

◮ Critical task: derive model statistics from
prior theory

◮ Several approaches – here we introduce a
new one....
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A New Direction: Potential
Games

◮ Most prior parameterization work has used dependence hypotheses
⊲ Define the conditions under which one relationship could affect another, and hope that this

is sufficiently reductive

⊲ Complete agnosticism regarding underlying mechanisms – could be social dynamics,

unobserved heterogeneity, or secret closet monsters

◮ A choice-theoretic alternative?
⊲ In some cases, reasonable to posit actors with some control over edges (e.g., out-ties)
⊲ Existing theory often suggests general form for utility

⊲ Reasonable behavioral models available (e.g., multinomial choice)

◮ The link between choice models and ERGs: potential games
⊲ Increasingly wide use in economics, engineering

⊲ Equilibrium behavior provides an alternative way to parameterize ERGs
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Potential Games and Network
Formation Games

◮ (Exact) Potential games (Monderer and Shapley, 1996)

⊲ Let X by a strategy set, u a vector utility functions, and V a set of players. Then (V, X, u) is

said to be a potential game if ∃ ρ : X 7→ R such that, for all i ∈ V ,

ui

`

x′
i, x−i

´

− ui (xi, x−i) = ρ
`

x′
i, x−i

´

− ρ (xi, x−i) for all x, x′ ∈ X.

◮ Consider a simple family of network formation games (Jackson, 2006) on Y:

⊲ Each i, j element of Y is controlled by a single player k ∈ V with finite utility uk; can choose
yij = 1 or yij = 0 when given an “updating opportunity”

⋄ We will here assume that i controls Yi·, but this is not necessary

⊲ Theorem: Let (i) (V,Y, u) in the above form a game with potential ρ; (ii) players choose

actions via a logistic choice rule; and (iii) updating opportunities arise sequentially such that

every (i, j) is selected with positive probability, and (i, j) is selected independently of the

current state of Y. Then Y forms a Markov chain with equilibrium distribution

Pr(Y = y) ∝ exp(ρ(y)), in the limit of updating opportunities.

◮ One can thus obtain an ERG as the long-run behavior of a strategic process, and
parameterize in terms of the hypothetical underlying utility functions
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Proof of Potential Game
Theorem

Assume an updating opportunity arises for yij , and assume that player k has control of yij . By the
logistic choice assumption,

Pr
“

Y = y
+
ij

˛

˛Yc
ij = yc

ij

”

=
exp

“

uk

“

y
+
ij

””

exp
“

uk

“

y
+
ij

””

+ exp
“

uk

“

y
−
ij

”” (2)

=
h

1 + exp
“

uk

“

y
−
ij

”

− uk

“

y
+
ij

””i−1
. (3)

Since u,Y form a potential game, ∃ ρ : ρ
“

y
+
ij

”

− ρ
“

y
−
ij

”

= uk

“

y
+
ij

”

− uk

“

y
−
ij

”

∀ k, (i, j),yc
ij .

Therefore, Pr
“

Y = y
+
ij

˛

˛

˛

Yc
ij = yc

ij

”

=
h

1 + exp
“

ρ
“

y
−
ij

”

− ρ
“

y
+
ij

””i−1
. Now assume that the

updating opportunities for Y occur sequentially such that (i, j) is selected independently of Y, with
positive probability for all (i, j). Given arbitrary starting point Y(0), denote the updated sequence of
matrices by Y(0),Y(1), . . .. This sequence clearly forms an irreducible and aperiodic Markov chain
on Y (so long as ρ is finite); it is known that this chain is a Gibbs sampler on Y with equilibrium

distribution Pr(Y = y) =
exp(ρ(y))

P

y′∈Y exp(ρ(y′))
, which is an ERG with potential ρ. By the ergodic

theorem, then Y(i) −−−−→
i→∞

ERG(ρ(Y)). QED.
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Some Potential Game
Properties

◮ Game-theoretic properties

⊲ Local maxima of ρ correspond to Nash equilibria in pure strategies; global
maxima of ρ correspond to stochastically stable Nash equilibria in pure strategies

⋄ At least one maximum must exist, since ρ is bounded above for any given θ

⊲ Fictitious play property; Nash equilibria compatible with best responses to mean

strategy profile for population (interpreted as a mixed strategy)

◮ Implications for simulation, model behavior

⊲ Multiplying θ by a constant α → ∞ will drive the system to its SSNE

⋄ Likewise, best response dynamics (equivalent to conditional stepwise ascent) always

leads to a NE

⊲ For degenerate models, “frozen” structures represent Nash equilibria in the
associated potential game

⋄ Suggests a social interpretation of degeneracy in at least some cases: either correctly

identifies robust social regimes, or points to incorrect preference structure
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Building Potentials:
Independent Edge Effects

◮ General procedure

⊲ Identify utility for actor i

⊲ Determine difference in ui for single
edge change

⊲ Find ρ such that utility difference is equal

to utility difference for all ui

◮ Linear combinations of payoffs

⊲ If ui (y) =
P

j u
(j)
i (y),

ρ (y) =
P

j ρ
(j)
i (y)

◮ Edge payoffs (homogeneous)

⊲ ui (y) = θ
P

j yij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θ

⊲ ρ (y) = θ
P

i

P

j yij

⊲ Equivalence: p1/Bernoulli density effect

◮ Edge payoffs (inhomogeneous)

⊲ ui (y) = θi

P

j yij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θi

⊲ ρ (y) =
P

i θi

P

j yij

⊲ Equivalence: p1 expansiveness effect

◮ Edge covariate payoffs

⊲ ui (y) = θ
P

j yijxij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θxij

⊲ ρ (y) = θ
P

i

P

j yijxij

⊲ Equivalence: Edgewise covariate effects

(netlogit)
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Building Potentials:
Dependent Edge Effects

◮ Reciprocity payoffs

⊲ ui (y) = θ
P

j yijyji

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θyji

⊲ ρ (y) = θ
P

i

P

j<i yijyji

⊲ Equivalence: p1 reciprocity effect

◮ 3-Cycle payoffs

⊲ ui (y) = θ
P

j 6=i

P

k 6=i,j yijyjkyki

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θ
P

k 6=i,j yjkyki

⊲ ρ (y) = θ
3

P

i

P

j 6=i

P

k 6=i,j yijyjkyki

⊲ Equivalence: Cyclic triple effect

◮ Transitive completion payoffs

⊲ ui (y) =

θ
P

j 6=i

P

k 6=i,j

2

4

yijykiykj + yijyikyjk

+yijyikykj

3

5

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

=

θ
P

k 6=i,j

ˆ

ykiykj + yikyjk + yikykj

˜

⊲ ρ (y) = θ
P

i

P

j 6=i

P

k 6=i,j yijyikykj

⊲ Equivalence: Transitive triple effect
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Empirical Example: Advice-Seeking Among
Managers

◮ Sample empirical application from
Krackhardt (1987): self-reported
advice-seeking among 21 managers in a
high-tech firm

⊲ Additional covariates: friendship, authority

(reporting)

◮ Demonstration: selection of potential
behavioral mechanisms via ERGs

⊲ Models parameterized using utility components
⊲ Model parameters estimated using maximum

likelihood (Geyer-Thompson)

⊲ Model selection via AIC
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Advice-Seeking ERG – Model
Comparison

◮ First cut: models with independent dyads:

Deviance Model df AIC Rank

Edges 578.43 1 580.43 7

Edges+Sender 441.12 21 483.12 4

Edges+Covar 548.15 3 554.15 5

Edges+Recip 577.79 2 581.79 8

Edges+Sender+Covar 385.88 23 431.88 2

Edges+Sender+Recip 405.38 22 449.38 3

Edges+Covar+Recip 547.82 4 555.82 6

Edges+Sender+Covar+Recip 378.95 24 426.95 1

◮ Elaboration: models with triadic dependence:

Deviance Model df AIC Rank

Edges+Sender+Covar+Recip 378.95 24 426.95 4

Edges+Sender+Covar+Recip+CycTriple 361.61 25 411.61 2

Edges+Sender+Covar+Recip+TransTriple 368.81 25 418.81 3

Edges+Sender+Covar+Recip+CycTriple+TransTriple 358.73 26 41 0.73 1

◮ Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates),
with additional effects for reciprocated, cycle-completing, and transitive-completing edges.
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Advice-Seeking ERG – AIC
Selected Model

Effect θ̂ s.e. Pr(> |Z|) Effect θ̂ s.e. Pr(> |Z|)

Edges −1.022 0.137 0.0000 ∗ ∗ ∗ Sender14 −1.513 0.231 0.0000 ∗ ∗ ∗

Sender2 −2.039 0.637 0.0014 ∗∗ Sender15 16.605 0.336 0.0000 ∗ ∗ ∗

Sender3 0.690 0.466 0.1382 Sender16 −1.472 0.232 0.0000 ∗ ∗ ∗

Sender4 −0.049 0.441 0.9112 Sender17 −2.548 0.197 0.0000 ∗ ∗ ∗

Sender5 0.355 0.495 0.4734 Sender18 1.383 0.214 0.0000 ∗ ∗ ∗

Sender6 −4.654 1.540 0.0025 ∗∗ Sender19 −0.601 0.190 0.0016 ∗∗

Sender7 −0.108 0.375 0.7726 Sender20 0.136 0.161 0.3986

Sender8 −0.449 0.479 0.3486 Sender21 0.105 0.210 0.6157

Sender9 0.393 0.496 0.4281 Reciprocity 0.885 0.081 0.0000 ∗ ∗ ∗

Sender10 0.023 0.555 0.9662 Edgecov (Reporting) 5.178 0.947 0.0000 ∗ ∗ ∗

Sender11 −2.864 0.721 0.0001 ∗ ∗ ∗ Edgecov (Friendship) 1.642 0.132 0.0000 ∗ ∗ ∗

Sender12 −2.736 0.331 0.0000 ∗ ∗ ∗ CycTriple −0.216 0.013 0.0000 ∗ ∗ ∗

Sender13 −0.986 0.194 0.0000 ∗ ∗ ∗ TransTriple 0.090 0.003 0.0000 ∗ ∗ ∗

Null Dev 582.24; Res Dev 358.73 on 394 df

◮ Some observations...

⊲ Arbitrary edges are costly for most actors
⊲ Edges to friends and superiors are “cheaper” (or even positive payoff)
⊲ Reciprocating edges, edges with transitive completion are cheaper...

⊲ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?
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Model Adequacy Check

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0.
0

0.
1

0.
2

0.
3

0.
4

in degree

pr
op

or
tio

n 
of

 n
od

es

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

out degree

pr
op

or
tio

n 
of

 n
od

es

003 012 102 021U 111D 030T 201 120U 210 300

0.
00

0.
05

0.
10

0.
15

triad census

pr
op

or
tio

n 
of

 tr
ia

ds

1 2 3 4 5 6 7 NR

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

minimum geodesic distance

pr
op

or
tio

n 
of

 d
ya

ds

Goodness−of−fit diagnostics
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Where Would One Go Next?

◮ Model refinement

⊲ Goodness-of-fit is not unreasonable, but some improvement is clearly possible

⊲ Could refine existing model (e.g., by adding covariates) or propose more

alternatives

◮ Replication on new cases

⊲ Given a smaller set of candidates, would replicate on new organizations

⊲ May lead to further refinement/reformulation

◮ Simplification

⊲ Given a model family that works well, can it be simplified w/out losing too much?

⊲ Seek the smallest model which captures essential properties of optimal model;

general behavior can then be characterized (hopefully)
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Summary

◮ Models for non-trivial networks pose non-trivial problems

⊲ Many ways to describe dependence among elements

⊲ Once one leaves simple cases, not always clear where to begin

◮ Potential games for ERG parameterization

⊲ Allow us to derive random cross-sectional behavior from strategic interaction

⊲ Provide sufficient conditions for ERG parameters to be interpreted in terms of
preferences

⊲ Allows for testing of competing behavioral models (assuming scope conditions

are met!)

◮ Approach seems promising, but many questions remain

⊲ Can we characterize utilities which lead to identifiable models?

⊲ How can we leverage other properties of potential games?
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