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Spatially Embedded Networks

• Simple idea: assign vertices 
to spatial locations

• Spatial embedding of G=(V,E)
– Location function ℓ:VS, where 
S is an abstract space

– Properties of S
• Admits some distance, d
• May or may not be continuous
• May or not be metric
• May contain social dimensions 

(“Blau” space) as well as 
physical ones

– For present purposes, take ℓ as 
given, fixed
• Useful, but can be relaxed

(Data from Freeman et al., 1988)
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An Inhomogeneous Bernoulli Family 
for Spatially Embedded Networks

• A simple family of models for spatially embedded 
social networks:

– where Y{0,1}NxN, d[0,∞)NxN, ℱ: [0,∞)[0,1], B Bernoulli pmf

• Special case of the inhomogeneous Bernoulli graph 
family with parameter matrix Φ

ij
=ℱ(d

ij
)

– Assumes that dependence among edges absorbed by 
distance structure – edges conditionally independent

• Related to the gravity models, i.e.

– where P is an interaction potential, and F is an impedance or 
spatial interaction function

Pr Y=y∣d =∏
{i , j }

B Y ij= y ij∣ℱ d ij  

EY ij=P iP  jF dij
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Generalization to Curved Exponential 
Random Graph Models

• Increasingly widely used approach – ERG form
• Our likelihood can be rewritten as a curved ERG

– Sufficient statistics are the edge indicators of Y; canonical 
parameters () are logits of marginal edge probabilities
• O(N2) canonical parameters – computational savvy advised

• General curved model: space + other effects

– Allows for integration of complex edge dependence, degree 
distribution constraints, other covariate effects, etc. (through t)

– Can use to control for social mechanisms when seeking spatial 
effects, or spatial effects when seeking social mechanisms

Pr Y= y∣ℱ , , d ∝exp  
T
t Y ∑

{i , j}

ℱ ℱ , d  yij

Pr Y= y∣ , d ∝exp∑{i , j}  , d  y ij  ,   , d =logit ℱ  , d 
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Using Spatial Models for 
Detailed Network Simulation

• Start with GIS data on populations in space
– Here, block-level information on metropolitan/micropolitan 

areas, as defined by US census

• Draw individual positions from a point process, given 
GIS constraints
– Attempt to approximate distribution of individual residences 

within blocks

• Draw network from spatial Bernoulli graph model 
given individual positions
– Requires a fitted SIF (obtained from prior data, or first 

principles)
– In practice, need to do clever things to make this scale

• Subdivide space into regions, avoid simulating all pairs for regions 
with very low probability of positive tie volume
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Placing People Within Blocks

• Challenge: placing individuals within census blocks
– Want simple, reasonably fast model which captures basic 

properties of residential settlement in a plausible way
• Constraints: fixed total population, household size distribution

– Needs to work with arbitrary regions, without requiring additional 
data

• Two simple approaches used here for planar 
coordinates
– Uniform placement: household coordinates drawn as Poisson 

process with constant intensity within each block; individual 
coordinates w/in household drawn from circular distribution 
centered on household location with maximum radius 5m

– Quasi-random placement: as per uniform placement, but 
household coordinates drawn from a two-dimensional Halton 
sequence (bases 2 and 3)
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Vertex Placement, Illustrated
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Vertex Placement, Illustrated
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Vertex Placement, Illustrated
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Vertex Placement, Illustrated
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Vertex Placement, Illustrated
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Vertex Placement, Illustrated

r
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Vertex Placement, Illustrated
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Example: Lawrence, KS
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Example: Lawrence, KS
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Artificial Elevation

• Issue: actual high-density blocks feature “artificial 
elevation” as an essential feature of the built 
environment
– Effect: inhibits local interaction, relative to what would be 

observed if everyone resided in x,y plane

• Crude solution: artificial elevation model
– Assign households to planar coordinates in random order
– When placing ith household, note number of other 

households within planar radius r (call this k)
– Set elevation of ith household to αk meters

• Result: single-story housing predominates, but multi-
story configurations emerge in dense areas
– For our purposes, arbitrarily set r=10m, α=4m
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Artificial Elevation, Illustrated
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Artificial Elevation, Illustrated
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Artificial Elevation, Illustrated
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Artificial Elevation, Illustrated
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Artificial Elevation, Illustrated
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Artificial Elevation in 
Lawrence, KS Models
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Choosing an SIF: Two “Test” 
Relations

• Festinger et al. (1950) - “Social Friendship”
– Collected in post WW-II housing project during 1946-47
– Subjects asked to provide three people “you most see 

socially”

• Freeman et al. (1988) - “Face-to-Face Interaction”
– Collected on a southern California beach
– 54 subjects observed for 60 hours over a 30 day period 
– Mean distance between actors and minutes interacting 

reported

• For each data set, numbers of possible, observed 
edges at each distance used to infer SIF
– Bayesian inhomogeneous Bernoulli graph model, SIF 

selected by Bayes Factor
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Declines as apx d-2.8
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Declines as apx d-6.4
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Geographical Cases

• In progress: examine a range of 
functional settlements, stratified by 
total population and spatial area

– Started with all US micropolitan 
and metropolitan areas (as 
defined by the US census

– For population, consider 
approximate size strata of 1,000, 
10,000, 100,000, and 1,000,000

– For area, consider log area strata 
of 9, 10, 11, and 12

– For each combination of 
conditions, sought settlement with 
minimum least squares deviation 
from desired population/land area

• Network simulation performed on 
each settlement, using each 
coordinate generation model and 
each relation

US Settlement Distribution by Log 
Population, Land Area
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Golden Valley, MT: Festinger 
Net, Uniform Model
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Spatial Distribution of Degree: 
Navajo, AZ
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Spatial Distribution of Core 
Number: Navajo, AZ
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Spatial Coverage of Robustly 
Connected Groups
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Initial Impressions from the 
Simulation Studies (So Far)

• Clear impact of spatial clustering on network structure
– Spatial clustering raises density only slightly, but small 

changes have large threshold effects
– Cluster spatial extent, proximity is also important (not just 

local intensity): cross-cluster ties can sustain connectivity
– Spatial heterogeneity has real consequences

• Choice of point placement algorithm does make a 
difference
– Halton sequence tends to suppress clustering, degree, by 

maximizing the minimum distance between households; 
uniform generates "clumps" that elevate local tie volume

– Effect should be largest for short-range ties, light-tailed SIFs, 
or properties based on local clustering; weakest for long-
range interaction
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Some Ongoing Questions

• How to further improve performance?
– Gridding system is often good, but requires tuning (and fails 

in places like Honolulu)
– Going to try R-trees - other suggestions?
– Network objects getting very big; may need to think of ways 

to segment and partially load on use (not so easy)

• Closely related problem (much work done here, but 
not shown!): estimating tie volumes between regions
– MC quadrature using Halton sequences turned out to be 

expensive - a fast quasi-random strategy would be nice
• Point-in-polygon calculations are the current bottleneck

– Now using R-trees to speed performance; seems to work 
well, but is there a better way?



35

Summary

• We now have tools for simulating spatially 
embedded networks on fairly large scales
– Currently works up to around 1e6 nodes
– Can use real geography; limited to projections for exact 

network (for now), but tie volumes are on WGS ellipsoid
– Assembling a large collection of test locations, networks

• Interesting opportunities going forward
– More performance enhancements
– Using testbed sims to evaluate algorithm performance
– Applying modeling strategy to simulation of latent space 

models, fast approximate prediction (e.g., tie volumes 
between groups for block models), etc.


	Physical Distance and the Structure of Large-Scale Interpersonal Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

