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Graphical Models Markov Random Fields

What Are Graphical Models?

Concise representations of probabilistic models
Several types:

Bayesian networks (DAGs)
Markov random fields (undirected graphs)
Factor graphs (bipartite graphs)
. . . and others!

A
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DE

suspects

{innocent,guilty}

friends

Nodes = random variables
Edges = dependencies
between variables
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Graphical Models Markov Random Fields

Representing Conditional Independencies

Interpreting a Markov Random Field

If all paths from X to Y pass through Z, then we can say
X and Y are conditionally independent given Z.

Graphically, with a
Markov Random Field (MRF):

A

B C

DE

Textually, through enumeration:

A ⊥ D,E | C
B ⊥ C,D,E | A
C ⊥ B | A
D ⊥ A,B,E | C
E ⊥ A,B,D | C
. . .



Graphical Models Markov Random Fields

Factorization

Conditional independence lets us factor a distribution:

A

B C

DE

A ⊥ D,E | C
B ⊥ C,D,E | A
C ⊥ B | A
D ⊥ A,B,E | C
E ⊥ A,B,D | C

p(A,B,C,D,E) = p(A)p(B|A)p(C|A,B)p(D|A,B,C)p(E |A,B,C,D)

= p(A)p(B|A)p(C|A)p(D|C)p(E |C)

Largest factor involves 2 variables!
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Graphical Models Markov Random Fields

Hammersley-Clifford Theorem

General factorization property of all MRFs:
Hammersley-Clifford Theorem
Every MRF factors as the product of potential functions defined
over cliques of the graph.

Potential functions are. . .
Strictly positive
Unnormalized

A
B C

DE

p(·) ∝ fA(A)fB(B)fC(C)fD(D)fE(E)fAB(A,B)fAC(A,C)fCD(C,D)fCE(C,E)
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Graphical Models Markov Random Fields

Specifying a Markov Random Field Model

Define the potential functions, e.g.:
Let our domain be 0=innocent, 1=guilty.

fB(B) =

{
.4 B = 0
.6 B = 1

Suspect B is acting suspicious.

fAB(A,B) =

{
2 A = B
1 A 6= B

Suspects A and B are friends.
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Graphical Models Inference

Marginalization with MRFs

Query p(A):

p(A) =
∑

B,C,D,E

p(A,B,C,D,E) O(dn)

A

B C

DE

Use graph structure to compute p(A)
in O(dn2).
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Graphical Models Inference

Belief Propagation (Sum-Product Algorithm)

View marginalization as a “message-passing” algorithm
Variables are computational nodes.
Intermediate results are “messages” between nodes.

A

B C

DE∑
B,C,D,E

f (A)f (B)f (C)f (D)f (E)f (A,B)f (A,C)f (C,D)f (C,E)
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Graphical Models Inference

Belief Propagation (Sum-Product Algorithm)

View marginalization as a “message-passing” algorithm
Variables are computational nodes.
Intermediate results are “messages” between nodes.

A

B C

DE

mEC(C) mDC(C)

mCA(A)mBA(A)

∝ p(A)



Graphical Models Inference

Belief Propagation (Sum-Product Algorithm)

Message update equation for pairwise MRFs:

mst(xt) =
∑
xs

f (xs)f (xs, xt)
∏

xu∈N (xs)\xt

mus(xs)


Exact for tree-structured graphs.

What about on graphs with loops?
Use the same equation! (“Loopy” BP)
No longer exact
May not converge
Often does quite well
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Graphical Models Inference

Related Algorithms
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Self-Localization Problem Description

Localization Scenario

Nodes distributed throughout a planar region.
(people, mobile sensors, . . . )

1 2

3

4

5

Local measurements:
node {(neighbor, distance)}

1 {}
2 {}
3 {}
4 {}
5 {}

Nodes that are “close enough” can estimate distance
between them.

Task: recover node locations.
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Self-Localization Model Formulation

Local Detection Model

Variables:
xs, location in R2 of node s
ost , indicates whether nodes s and t detect each other
dst , noisy observation of ||xs − xt ||
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Self-Localization Model Formulation

Joint Model

p(x ,o,d) =
∏
(s,t)

p(ost | xs, xt)
∏

(s,t):ost=1

p(dst | xs, xt)
∏

s

p(xs)

x1 x2

x3

x4

x5

ost = 1
ost = 0

fst(xs, xt) =

{
p(ost = 1|xs, xt)p(dst |xs, xt) if ost = 1
1− p(ost = 1|xs, xt) if ost = 0



Self-Localization Model Formulation

Handling Continuous Variables

Variable domains are continuous! (locations in R2)

=⇒ replace sums with integrals?

mst(xt) =

∫
xs

f (xs)f (xs, xt)
∏

xu∈N (xs)\xt

mus(xs)



Theory holds, but now we must compute the integrals.
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Self-Localization Model Formulation

Particle Belief Propagation (PBP)

Draw weighted particles from each variable’s domain.
Run (importance-corrected) discrete BP over these
particles.

mst(xt) =

∫
xs

f (xs, xt)f (xs)
∏

xu∈N (xs)\xt

mus(xs)



= E
xs∼W (xs)

f (xs, xt)
f (xs)

W (xs)

∏
xu∈N (xs)\xt

mus(xs)


m̂(i)

st ≈
1
n

n∑
k=1

f
(

x (k)
s , x (i)

t

) f
(

x (k)
s

)
W
(

x (k)
s

) ∏
xu∈N (xs)\xt

mus

(
x (k)

s

)
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Particle Belief Propagation (PBP)

Draw weighted particles from each variable’s domain.
Run (importance-corrected) discrete BP over these
particles.
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Latent Space Embeddings of Social Networks Problem Description

Main Idea

Intuition
Actors live in a latent, d−dimensional “social space”.
Proximity in social space increases the likelihood of a link.

Hoff, Raftery, Handcock. Latent space approaches to social
network analysis. JASA 2002.
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Location is the end goal

Latent space embedding
Social space
Network link⇒ proximity in
latent space
Latent location indirectly useful
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Latent Space Embeddings of Social Networks Model Formulation

Local Model

Variables:
zs, location in latent space of node s
yst , social network link indicator

p(yst | zs, zt) = σ(α− ||zs − zt ||)
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Latent Space Embeddings of Social Networks Model Formulation

Joint Model

Social Network:

1 2

3

4

5

MRF model:

z1 z2

z3

z4

z5

yst = 1
yst = 0

fst(zs, zt) = p(yst |zs, zt)
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Latent Space Embeddings of Social Networks Preliminary Results

Test Data Set

Sampson’s monk data
18 monks living in a monestary
Links indicate a “liking” relation
Well studied data set

MLE (Hoff, Raftery, Handcock ’02)



Latent Space Embeddings of Social Networks Preliminary Results

PBP Embedding of Monk Data
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PBP can estimate marginals in the self-localization
problem.
Could BP be useful for latent space network modeling?
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