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Graphical Models ~ Markov Random Fields

Representing Conditional Independencies

Interpreting a Markov Random Field

If all paths from X to Y pass through Z, then we can say
X and Y are conditionally independent given Z.

Graphically, with a Textually, through enumeration:
Markov Random Field (MRF):
G mALDE|C
mB1lCDE|A
@ G mCLlLB|A
mD1ABE|C
(E) (D) mELABD|C
m.
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m Conditional independence lets us factor a distribution:
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Graphical Models ~ Markov Random Fields

Factorization

m Conditional independence lets us factor a distribution:
ALDE|C

(A) o
mBLCDE|A
G G mCLB|A
G Q mDIABE|C
]

ELABD|C
p(A,B,C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)
= P(A)P(B|A)p(C|A)p(D|C)p(E|C)

Largest factor involves 2 variables!
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Hammersley-Clifford Theorem

General factorization property of all MRFs:
Hammersley-Clifford Theorem

Every MRF factors as the product of potential functions defined
over cliques of the graph.

m Potential functions are. .. A
m Strictly positive ® ©
®©

m Unnormalized

©

p(-) o< fa(A)fa(B)fc(C)fo(D)fe(E)fas(A, B)fac(A, C)fep(C, D)fce(C, E)
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Define the potential functions, e.qg.:
Let our domain be O=innocent, 1=guilty.
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Graphical Models ~ Markov Random Fields

Specifying a Markov Random Field Model

Define the potential functions, e.qg.:
Let our domain be O=innocent, 1=guilty.

4 B=0 Suspect B is acting suspicious.
fB(B):{6 B p g p

2 A=B Suspects A and B are friends.
fAB(A’B):{1 A+B ’
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Query p(A):
p(A)= >  p(AB,C,D,E) O(d")
B,C.D,E
(A
@ @ Use graph structure to compute p(A)
in O(dn?).

® ©
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Belief Propagation (Sum-Product Algorithm)

m View marginalization as a “message-passing” algorithm

m Variables are computational nodes.
m Intermediate results are “messages” between nodes.
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Graphical Models  Inference

Belief Propagation (Sum-Product Algorithm)

m Message update equation for pairwise MRFs:

Ms(xt) =Y | f(x)f(xe, %) [ mus(Xs)

Xs XuEN (Xs)\X¢

m Exact for tree-structured graphs.



Graphical Models  Inference

Belief Propagation (Sum-Product Algorithm)

m Message update equation for pairwise MRFs:

Ms(xt) =Y | f(x)f(xe, %) [ mus(Xs)

Xs XuEN (Xs)\X¢
m Exact for tree-structured graphs.

m What about on graphs with loops?
m Use the same equation! (“Loopy” BP)
m No longer exact
m May not converge
m Often does quite well



Exact

BP, Easy Mean Field, Easy TRW-BP, Easy
1.5 1.51 31 1.5
1 11 21 11
0.5 0.5 11 0.5
0 T 0 T T 0 T T 0 T T
-1 0 -1 0 1 -1 0 1 -1 0 1
Exact BP, Hard Mean Field, Hard TRW-BP, Hard
1.51 31 31 1.5
11 21 21 11
0.5 1 1 0.5
0 0 0 0
-1 0 -1 0 1 -1 0 1 -1 0 1
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Self-Localization ~ Problem Description

Localization Scenario

m Nodes distributed throughout a planar region.
m (people, mobile sensors, .. .)

A\ Local measurements:
) node | {(neighbor, distance)}
—D @— T |0
2 || {
® 3 || {
@ 40
hil 5 [0
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Self-Localization ~ Problem Description

Localization Scenario

m Nodes distributed throughout a planar region.
m (people, mobile sensors, .. .)

A\ Local measurements:
/\3&r node | {(neighbor, distance)}
—~1E= 7% 1 [[{(2,3)(3,2)(44) (5,3)}
2 | {(1,3)(3,1) (5,3)}
\ 5{ 3 {(1,2)(2,1)}
e 4 [16.1)(1.4)
j’ 5 [ {(4,1)(1,3) (2,3)}

m Nodes that are “close enough” can estimate distance
between them.

m Task: recover node locations.
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Self-Localization ~ Model Formulation

Local Detection Model

m Variables:

m X, location in R? of node s
m Oy, indicates whether nodes s and t detect each other
m ds, hoisy observation of ||xs — x;||

Detection Noise Distance Sensor Noise
1- 14
~ 0.8+ N 081
< =
I'» 0.6 <~ 0.6 1
= )
— 0.41 = 041
S ]
= 0.2 % 0.2
0 0

o
=
N
w 4
IN
(&)

01 2 3 45 6 7 8
lIx, = %, d



Self-Localization ~ Model Formulation

Joint Model

p(x,0,d) = H p(0st | Xs, Xt) H p(dst | Xs, Xt) HP(XS)

(s:1) (s,1):05=1 s

|f Ost - 0




Self-Localization ~ Model Formulation

Handling Continuous Variables

m Variable domains are continuous! (locations in R?)

= replace sums with integrals?
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Handling Continuous Variables

m Variable domains are continuous! (locations in R?)

= replace sums with integrals?

ms,(xt)/{f(xs)f(xs,x,) H Mus(Xs)

XuEeN (Xs)\ Xt

Xs

m Theory holds, but now we must compute the integrals.



Self-Localization ~ Model Formulation

Particle Belief Propagation (PBP)

m Draw weighted particles from each variable’s domain.

m Run (importance-corrected) discrete BP over these
particles.
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Particle Belief Propagation (PBP)

m Draw weighted particles from each variable’s domain.

m Run (importance-corrected) discrete BP over these
particles.

mst(Xt):/ f(xs, Xt)f(Xs) H mUS(Xs)}

Xs XuEN (Xs)\ Xt

= E |f(xsX) Jﬁz(;s)) 1T mus(xs)]

xs~W(xs) XuEN (Xs)\X¢



Self-Localization ~ Model Formulation

Particle Belief Propagation (PBP)

m Draw weighted particles from each variable’s domain.

m Run (importance-corrected) discrete BP over these
particles.

mst(Xt):/ fxs x)f(xs) |1 mUS(Xs)}

Xs XuEN (Xs)\ Xt

- E f(Xs, Xt) f(x) H mus(xs)}

Xu EN(XS)\X[

[ (k)
30~ LS [ (a0, 50) U0 (") M e (xék))]

1 w (xék)) XuEN (Xs)\ Xt
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Results

Self-Localization ~ Experimental Results

Synthetic example:

O Anchor

ile O
o Mobile o
A Tage B

O Anchor
O Mobile
A Target

O Anchor
i O
O Mobile o
A Target Ie)
O

O Anchor
O Mobile o} o
A Target [re}

O

Particle BP

TRW Particle BP
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Latent Space Embeddings of Social Networks ~ Problem Description

Main ldea

m Intuition

m Actors live in a latent, d—dimensional “social space”.
m Proximity in social space increases the likelihood of a link.

Hoff, Raftery, Handcock. Latent space approaches to social
network analysis. JASA 2002.
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m Localization m Latent space embedding
m Geographic space m Social space
m Detection = physical m Network link = proximity in
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m Location is the end goal m Latent location indirectly useful
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Latent Space Embeddings of Social Networks ~ Model Formulation

Local Model

m Variables:

m Z;, location in latent space of node s
B Vg, social network link indicator

P(Yst | Zs,2t) = o(a — || 2s — zi|])

Link Probability

P, | liz, -z
o
D

liz, - 2



Latent Space Embeddings of Social Networks ~ Model Formulation

Joint Model

Social Network: MRF model:

)

Vst =1
— Ya=0

25
)

fst(Zs, zt) = P(Yst|Zs, 2t)
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Latent Space Embeddings of Social Networks  Preliminary Results

Test Data Set

m Sampson’s monk data
m 18 monks living in a monestary
m Links indicate a “liking” relation
m Well studied data set

MLE (Hoff, Raftery, Handcock ’02)
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PBP Embedding of Monk Data

Monk Embedding, Marginal Modes
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PBP Embedding of Monk Data

Monk Embedding, Marginal Modes . Monk 16 Marginal
4 L L
2 2 @ ¢/ © o
0 0 0
-2 -2 S
o
-4 4 —4 ®
o
-6 -6 o
-10 5 -10 -5 0




Conclusions

Conclusions
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m PBP can estimate marginals in the self-localization
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Conclusions

Conclusions

m BP is a generic inference method for computing marginals.

m PBP can estimate marginals in the self-localization
problem.

m Could BP be useful for latent space network modeling?

Thank you!
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