Belief Propagation for Spatial Network Embeddings

Andrew Frank Alex Ihler Padhraic Smyth

Department of Computer Science UC Irvine

August 25, 2009

Outline

1 Graphical Models

Markov Random Fields
Inference

2 Self-Localization

- Problem Description
- Model Formulation
- Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Outline

Graphical Models
Markov Random Fields
Inference

- 2 Self-Localization
 - Problem Description
 - Model Formulation
 - Experimental Results
- 3 Latent Space Embeddings of Social Networks
 - Problem Description
 - Model Formulation
 - Preliminary Results

Concise representations of probabilistic models

- Bayesian networks (DAGs)
- Markov random fields (undirected graphs)
- Factor graphs (bipartite graphs)
- ... and others!

Concise representations of probabilistic models

- Bayesian networks (DAGs)
- Markov random fields (undirected graphs)
- Factor graphs (bipartite graphs)
- …and others!

- Nodes = random variables
- Edges = dependencies between variables

Concise representations of probabilistic models

- Bayesian networks (DAGs)
- Markov random fields (undirected graphs)
- Factor graphs (bipartite graphs)
- …and others!

- Nodes = random variables
- Edges = dependencies between variables

Concise representations of probabilistic models

- Bayesian networks (DAGs)
- Markov random fields (undirected graphs)
- Factor graphs (bipartite graphs)
- …and others!

- Nodes = random variables
- Edges = dependencies between variables

Representing Conditional Independencies

Interpreting a Markov Random Field

If all paths from X to Y pass through Z, then we can say X and Y are conditionally independent given Z.

Graphically, with a Markov Random Field (MRF):

Textually, through enumeration:

- *A* ⊥ *D*, *E* | *C*
- *B* ⊥ *C*, *D*, *E* | *A*
- $\blacksquare C \perp B \mid A$
- *D* ⊥ *A*, *B*, *E* | *C*
- *E* ⊥ *A*, *B*, *D* | *C*

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)p(D|C)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)p(D|C)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)p(D|C)p(E|C)

Conditional independence lets us factor a distribution:

p(A, B, C, D, E) = p(A)p(B|A)p(C|A, B)p(D|A, B, C)p(E|A, B, C, D)= p(A)p(B|A)p(C|A)p(D|C)p(E|C)

Largest factor involves 2 variables!

Hammersley-Clifford Theorem

General factorization property of all MRFs:

Hammersley-Clifford Theorem

Every MRF factors as the product of potential functions defined over cliques of the graph.

- Potential functions are...
 - Strictly positive
 - Unnormalized

Hammersley-Clifford Theorem

General factorization property of all MRFs:

Hammersley-Clifford Theorem

Every MRF factors as the product of potential functions defined over cliques of the graph.

- Potential functions are...
 - Strictly positive
 - Unnormalized

 $p(\cdot) \propto f_A(A) f_B(B) f_C(C) f_D(D) f_E(E) f_{AB}(A, B) f_{AC}(A, C) f_{CD}(C, D) f_{CE}(C, E)$

Specifying a Markov Random Field Model

Define the potential functions, e.g.: Let our domain be 0=innocent, 1=guilty.

$$f_B(B) = \begin{cases} .4 & B = 0\\ .6 & B = 1 \end{cases}$$

$$f_{AB}(A,B) = \begin{cases} 2 & A = B \\ 1 & A \neq B \end{cases}$$

Specifying a Markov Random Field Model

Define the potential functions, e.g.: Let our domain be 0=innocent, 1=guilty.

$$f_B(B) = \begin{cases} .4 & B = 0\\ .6 & B = 1 \end{cases}$$

Suspect B is acting suspicious.

$$f_{AB}(A,B) = \begin{cases} 2 & A = B \\ 1 & A \neq B \end{cases}$$

Specifying a Markov Random Field Model

Define the potential functions, e.g.: Let our domain be 0=innocent, 1=guilty.

$$f_B(B) = \begin{cases} .4 & B = 0 \\ .6 & B = 1 \end{cases}$$
 Suspect B is acting suspicious.

$$f_{AB}(A,B) = \begin{cases} 2 & A = B \\ 1 & A \neq B \end{cases}$$

Suspects A and B are friends.

Outline

1 Graphical Models ■ Markov Random Fields

- Inference
- 2 Self-Localization
 - Problem Description
 - Model Formulation
 - Experimental Results
- 3 Latent Space Embeddings of Social Networks
 - Problem Description
 - Model Formulation
 - Preliminary Results

Marginalization with MRFs

Query p(A):

$$p(A) = \sum_{B,C,D,E} p(A, B, C, D, E) \quad O(d^n)$$

Marginalization with MRFs

Query p(A):

$$p(A) = \sum_{B,C,D,E} p(A, B, C, D, E) \quad O(d^n)$$

Use graph structure to compute p(A) in $O(dn^2)$.

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C,D,E} f(A)f(B)f(C)f(D)f(E)f(A,B)f(A,C)f(C,D)f(C,E)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C,D,E} f(A)f(B)f(C)f(D)f(E)f(A,B)f(A,C)f(C,D)f(C,E)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C,D} f(A)f(B)f(C)f(D)f(A,B)f(A,C)f(C,D)\sum_{E} f(E)f(C,E)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

$\sum_{B,C,D} f(A)f(B)f(C)f(D)f(A,B)f(A,C)f(C,D)m_{EC}(C)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

$\sum_{B,C,D} f(A)f(B)f(C)f(D)f(A,B)f(A,C)f(C,D)m_{EC}(C)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C} f(A)f(B)f(C)f(A,B)f(A,C)m_{EC}(C)\sum_{D} f(D)f(C,D)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C} f(A)f(B)f(C)f(A,B)f(A,C)m_{EC}(C)m_{DC}(C)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B,C} f(A)f(B)f(C)f(A,B)f(A,C)m_{EC}(C)m_{DC}(C)$
Belief Propagation (Sum-Product Algorithm)

View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\sum_{B} f(A)f(B)f(A,B) \sum_{C} f(C)f(A,C)m_{EC}(C)m_{DC}(C)$

Belief Propagation (Sum-Product Algorithm)

View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

$$\sum_{B} f(A)f(B)f(A,B)m_{CA}(A)$$

Belief Propagation (Sum-Product Algorithm)

- View marginalization as a "message-passing" algorithm
 - Variables are computational nodes.
 - Intermediate results are "messages" between nodes.

Belief Propagation (Sum-Product Algorithm)

View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

Graphical Models

Inference

Belief Propagation (Sum-Product Algorithm)

View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $f(A)m_{CA}(A)m_{BA}(A)$

Graphical Models

Inference

Belief Propagation (Sum-Product Algorithm)

View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $f(A)m_{CA}(A)m_{BA}(A)$

Belief Propagation (Sum-Product Algorithm)

■ View marginalization as a "message-passing" algorithm

- Variables are computational nodes.
- Intermediate results are "messages" between nodes.

 $\propto p(A)$

Belief Propagation (Sum-Product Algorithm)

Message update equation for pairwise MRFs:

$$m_{st}(x_t) = \sum_{x_s} \left[f(x_s) f(x_s, x_t) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

Exact for tree-structured graphs.

Belief Propagation (Sum-Product Algorithm)

Message update equation for pairwise MRFs:

$$m_{st}(x_t) = \sum_{x_s} \left[f(x_s) f(x_s, x_t) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

Exact for tree-structured graphs.

- What about on graphs with loops?
 - Use the same equation! ("Loopy" BP)
 - No longer exact
 - May not converge
 - Often does quite well

Related Algorithms

Outline

1 Graphical Models

- Markov Random Fields
- Inference

2 Self-Localization

- Problem Description
- Model Formulation
- Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{}
2	{}
3	{}
4	{}
5	{}

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{ <mark>(2,3)</mark> }
2	{ <mark>(1,3)</mark> }
3	{}
4	{}
5	{}

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{(2,3) <mark>(3,2)</mark> }
2	{(1,3)}
3	{ (1,2) }
4	{}
5	{}

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{(2,3)(3,2)}
2	{(1,3)}
3	{(1,2)}
4	{(5 , 1)}
5	{(4 , 1)}

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{(2,3)(3,2)(4,4) (5,3)}
2	{(1,3)(3,1) (5,3)}
3	{(1,2)(2,1)}
4	{(5,1)(1,4)}
5	{(4,1)(1,3) (2,3)}

Nodes distributed throughout a planar region.

■ (people, mobile sensors, ...)

Local measurements:

node	{(neighbor, distance)}
1	{(2,3)(3,2)(4,4) (5,3)}
2	{(1,3)(3,1) (5,3)}
3	{(1,2)(2,1)}
4	{(5,1)(1,4)}
5	{(4,1)(1,3) (2,3)}

- Nodes that are "close enough" can estimate distance between them.
- Task: recover node locations.

Outline

1 Graphical Models

- Markov Random Fields
- Inference

2 Self-Localization

- Problem Description
- Model Formulation
- Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Local Detection Model

- Variables:
 - x_s , location in \mathbb{R}^2 of node s
 - *o*_{st}, indicates whether nodes *s* and *t* detect each other
 - d_{st} , noisy observation of $||x_s x_t||$

Joint Model

$$p(\mathbf{x}, \mathbf{o}, \mathbf{d}) = \prod_{(s,t)} p(o_{st} \mid x_s, x_t) \prod_{(s,t):o_{st}=1} p(d_{st} \mid x_s, x_t) \prod_{s} p(x_s)$$

$$f_{st}(x_s, x_t) = \begin{cases} p(o_{st} = 1 | x_s, x_t) p(d_{st} | x_s, x_t) & \text{if } o_{st} = 1 \\ 1 - p(o_{st} = 1 | x_s, x_t) & \text{if } o_{st} = 0 \end{cases}$$

Self-Localization Model Formulation

Handling Continuous Variables

■ Variable domains are continuous! (locations in ℝ²) ⇒ replace sums with integrals?

$$m_{st}(x_t) = \int_{x_s} \left[f(x_s) f(x_s, x_t) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

Self-Localization Model Formulation

Handling Continuous Variables

■ Variable domains are continuous! (locations in ℝ²) ⇒ replace sums with integrals?

$$m_{st}(x_t) = \int_{x_s} \left[f(x_s)f(x_s, x_t) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

■ Theory holds, but now we must compute the integrals.

Self-Localization Particle Belief Propagation (PBP)

Draw weighted particles from each variable's domain.

Model Formulation

Run (importance-corrected) discrete BP over these particles.

$$m_{st}(x_t) = \int_{x_s} \left[f(x_s, x_t) f(x_s) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

Self-Localization Particle Belief Propagation (PBP)

Draw weighted particles from each variable's domain. Run (importance-corrected) discrete BP over these

Model Formulation

particles.

$$m_{st}(x_t) = \int_{x_s} \left[f(x_s, x_t) f(x_s) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$
$$= \mathop{\mathbb{E}}_{x_s \sim W(x_s)} \left[f(x_s, x_t) \frac{f(x_s)}{W(x_s)} \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right]$$

Self-Localization Particle Belief Propagation (PBP)

Draw weighted particles from each variable's domain. Run (importance-corrected) discrete BP over these

Model Formulation

particles.

$$\begin{split} m_{st}(x_t) &= \int\limits_{x_s} \left[f(x_s, x_t) f(x_s) \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right] \\ &= \sum_{x_s \sim W(x_s)} \left[f(x_s, x_t) \frac{f(x_s)}{W(x_s)} \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}(x_s) \right] \\ \hat{m}_{st}^{(i)} &\approx \frac{1}{n} \sum_{k=1}^n \left[f\left(x_s^{(k)}, x_t^{(i)} \right) \frac{f\left(x_s^{(k)} \right)}{W\left(x_s^{(k)} \right)} \prod_{x_u \in \mathcal{N}(x_s) \setminus x_t} m_{us}\left(x_s^{(k)} \right) \right] \end{split}$$

Outline

1 Graphical Models

- Markov Random Fields
- Inference

2 Self-Localization

- Problem Description
- Model Formulation
- Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Results

Results

Particle BP

Results

Particle BP

Outline

Graphical Models

- Markov Random Fields
- Inference
- 2 Self-Localization
 - Problem Description
 - Model Formulation
 - Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Main Idea

Intuition

- Actors live in a latent, *d*-dimensional "social space".
- Proximity in social space increases the likelihood of a link.

Hoff, Raftery, Handcock. Latent space approaches to social network analysis. JASA 2002.

Connection to Localization

Localization

- Geographic space
- Detection ⇒ physical proximity
- Location is the end goal

- Latent space embedding
 - Social space
 - Network link ⇒ proximity in latent space
 - Latent location indirectly useful

Connection to Localization

Localization

- Geographic space
- Detection ⇒ physical proximity
- Location is the end goal

- Latent space embedding
 - Social space
 - Network link ⇒ proximity in latent space
 - Latent location indirectly useful

Connection to Localization

Localization

- Geographic space
- Detection ⇒ physical proximity
- Location is the end goal

- Latent space embedding
 - Social space
 - Network link ⇒ proximity in latent space
 - Latent location indirectly useful

Outline

Graphical Models

- Markov Random Fields
- Inference
- 2 Self-Localization
 - Problem Description
 - Model Formulation
 - Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Local Model

Variables:

- *z_s*, location in latent space of node *s*
- *y*_{st}, social network link indicator

Joint Model

 $f_{st}(z_s, z_t) = p(y_{st}|z_s, z_t)$

Outline

Graphical Models

- Markov Random Fields
- Inference
- 2 Self-Localization
 - Problem Description
 - Model Formulation
 - Experimental Results

3 Latent Space Embeddings of Social Networks

- Problem Description
- Model Formulation
- Preliminary Results

Test Data Set

Sampson's monk data

- 18 monks living in a monestary
- Links indicate a "liking" relation
- Well studied data set

MLE (Hoff, Raftery, Handcock '02)

Latent Space Embeddings of Social Networks Preliminary Results

PBP Embedding of Monk Data

Latent Space Embeddings of Social Networks Preliminary Results

PBP Embedding of Monk Data

Conclusions

- BP is a generic inference method for computing marginals.
- PBP can estimate marginals in the self-localization problem.
- Could BP be useful for latent space network modeling?

Conclusions

- BP is a generic inference method for computing marginals.
- PBP can estimate marginals in the self-localization problem.
- Could BP be useful for latent space network modeling?

Thank you!