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Latent Space Embedding

Latent Space Embedding (LSE)

The probability of relational ties in a
network may depend on similarity of
characteristics of individuals.

Subsets of individuals with many ties may
indicate that the group is nearby in some
social space of characteristics.

Imagine that each actor i is associated
with a position zi in social space.

This social space consists of unobserved
latent characteristics, which influence the
existence of ties in the network.

LSE Estimation: Given a social network Y ,
estimate these positions Z .
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Latent Space Embedding

Latent Space Embedding (LSE)

Usefulness of LSE

Provides a parsimonious model of network structure (O(dn) rather
than O(n2))

Allows for natural interpretation of relational concepts, such as
“betweenness,” “surroundedness,” and “flatness”

Provides a means to perform visual analysis of network structure
through spatial relationships (when dimension is low)

The model is flexible and extensible.
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LSE Model and Estimation

LSE — Stochastic Model [HRH02]

Input

Y , an n × n sociomatrix (yi,j = 1 if there is a tie between i and j)

Additional covariate information X (ignored here)

Model Parameters

Z : the positions of n individuals, {z1, . . . , zn}

α: real-valued scaling parameter

Stochastic Model

Ties are independent of each other, but depend on Z and α.

Pr[Y | Z , α] =
∏

i 6=j

Pr[yi,j | zi , zj , α]



LSE Model and Estimation

LSE — Estimation

Objective

Given an n × n matrix Y , determine Z and α to maximize Pr[Y | Z , α].

MCMC — Metropolis Hastings Algorithm

An iterative algorithm for drawing a sequence of samples
Z0,Z1,Z2, . . . from a distribution [MRR+53]

Simplified View: For k = 0, 1, 2, . . .

Sample a proposal Z from some distribution J(Z | Zk)
Evaluate the decision variable

ρ =
Pr[Y | Z , αk ]

Pr[Y | Zk , αk ]

Accept Z as Zk+1 with probability min(1, ρ)

Convergence may require many iterations. Efficiency is critical.



LSE Model and Estimation

LSE — Cost Computation

Metropolis-Hastings Main Loop

Perturb point positions → Z

Evaluate decision variable → ρ(Y ,Z , α) (← bottleneck)

Accept/Reject

Evaluating the Decision Variable

Introduce a parameterization η(Z , α) [HRH02]:

ηi,j = log odds(yi,j = 1 | zi , zj , α)

= α− dist(zi , zj)

log Pr[Y | η] =
∑

i 6=j

(ηi,jyi,j − log (1 + eηi,j ))

Computing this log-likelihood naively requires O(n2) time.
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WSPDs and static cost computation

Well-Separated Pair Decomposition (WSPD)

Well-Separated Pair Decomposition

n points determine O(n2) pairs

A and B are s-well separated if they
can be enclosed in balls of radius r

that are separated by at least s · r

A WSPD of a point set P is a
collection of well-separated pairs
(Ai ,Bi ) covering all pairs of the set

An n-element point set in dimension d

has a WSPD of size O(sdn) = O(n)
[CaK95]

Distances approximated to a relative
error of (1 + 1

s
).

≥ s · r

r

r

A

B

28 pairs 12 well separated pairs
(separation factor = 1)



WSPDs and static cost computation

Computing Costs (Statically)

Approximating the log-likelihood

Pr[Y | η] =
∑

i 6=j

{ηi,jyi,j − log (1 + eηi,j )}

≈
∑

i 6=j

{

ηi,jyi,j −

(

log 2 +
ηi,j

2
+

η2
i,j

8

)}

≈
∑

(A,B)∈WSPD

{

ηA,ByA,B −

(

log 2 +
ηA,B

2
+

η2
A,B

8

)}

Precompute ηA,B, η2
A,B and yA,B in O(n(log n + sd)) time (Good!)

After perturbation, need to rebuild spatial index and WSPD (Bad!)
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Efficient incremental cost computation

Computing Costs (Incrementally)

Incremental Hypothesis

If point perturbations are small, then relatively few changes to WSPD
structure.

Incremental Approach

(After each perturbation):

Update spatial index (← this talk )

Update WSPD structure

Update decision variable



Nets and net trees

Nets

Net

P is a finite set of points in a R
d . Given

r > 0, an r -net for P is a subset X ⊆ P

such that,

max
p∈M

dist(p,X ) < r and

min
x,x′∈X

x 6=x′

dist(x , x ′) ≥ r .

Features

Intrinsic: Independent of coord. frame

Stable: Relatively insensitive to small
point motions



Nets and net trees

Net Tree

Net Tree

The leaves of the tree consists of the points of P.

The tree is based on a series of nets, P(1),P(2), . . . ,P(h), where P(i)

is a (2i )-net for P(i−1).

Each node on level i − 1 is associated with a parent, at level i , which
lies lies within distance 2i .
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Incremental motion model

Incremental Motion — Observer-Builder Model

Incremental (Black-Box) Motion

Motion occurs in discrete time steps

All points may move

No constraints on motion, but processing is most efficient when
motion is small or predictable

Observer-Builder Model

Two agents cooperate to maintain data structure [MNP+04,YiZ09]

Observer: Observes points motions
Builder: Maintains the data structure

Certificates: Boolean conditions, which prove structure’s correctness



Incremental motion model

Incremental Model — Observer-Builder Model

Communication Protocol

Builder maintains structure and issues certificates

Observer notifies builder of any certificate violations

Builder then fixes the structure and updates certificates
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Incremental motion model

Observer-Builder — Cost Model

Cost Model

Computational cost is the total communication complexity (e.g.,
number of bits) between the observer and builder.

Builder’s goal: Issue certificates that will be stable against future
motion.

Builder’s and observer’s overheads are not counted:

Builder’s overhead: Is small.
Observer’s overhead: Observer can exploit knowledge about point
motions to avoid re-evaluating certificates.
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Maintaining nets for moving points

Incremental Online Algorithm for Maintaining an r -Net

What the Builder Maintains

The point set, P

The r -net, X

For each p ∈ P:

A representative rep(p) ∈ X , where dist(p, x) ≤ r

A candidate list cand(p) ⊆ X of possible representatives for p

Certificates

For p ∈ P, Assignment Certificate(p): dist(p, rep(p)) ≤ r

(representative is close enough)

For x ∈ X , Packing Certificate(x): |b(x , r) ∩ X | ≤ 1 (no other
net-point is too close)



Maintaining nets for moving points

Incremental Online Algorithm for Maintaining an r -Net

Assignment Certificate Violation(p)

Point p has moved beyond distance r from its representative:

If cand(p) has a representative x within distance r , x is now p’s new
representative.

Otherwise, make p a net point (add it to X ) and add p to candidate
lists of points within distance r of p

Packing Certificate Violation(x)

There exists another net point within distance r of x :

Remove all net points within radius r of x . (This may induce many
assignment violations)

Handle all assign certificate violations



Maintaining nets for moving points

Competitive Ratio

Competitive Ratio

We establish the efficiency through a competitive analysis

Given an incremental algorithm A and motion sequence P, define

CA(P) = Total communication cost of running A on P

COPT (P) = Total communication cost of optimal algorithm on P

The optimal algorithm may have full knowledge of future motion

Competitive Ratio:

max
P

CA(P)

COPT (P)



Maintaining nets for moving points

Slack Net

Slack Net

To obtain a competitve ratio, we relaxed the r -net definition slightly.

Given constants α, β ≥ 1, an (α, β)-slack r -net is a subset X ⊆ P of
points such that

max
p∈M

dist(p,X ) < α r and ∀x ∈ X , |{X ∩ b(x , r)}| ≤ β.

Covering radius larger by factor α. Allow up to β net points to
violate packing certificate.



Maintaining nets for moving points

Our Results

Theorem: (Slack-Net Maintenance)

There exists an incremental online algorithm, which for any real r > 0,
maintains a (2, β)-slack r -net for any point set P under incremental
motion. Under the assumption that P is a (2, β)-slack (r/2)-net, the
algorithm achieves a competitive ratio of O(1).

Theorem: (Slack-Net Tree Maintenance)

There exists an online algorithm, which maintains a (4, β)-slack net tree
for any point set P under incremental motion. The algorithm achieves a
competitive ratio of at most O(h2), where h is the height of the tree.



Concluding Remarks

Summary

LSE is a flexible and powerful method for producing a geometric
point model for a given social network

It estimates point positions in an unobserved social space based on a
stochastic model relating network ties to distances

Introduced a computational model for incremental motion.

Showed how to improve efficiency of LSE computations based on
MCMC approaches through the use of WSPDs (statically) and an
online incremental algorithm (dynamically).

Concluding remarks

Tighten competitive ratio bounds (or show they are tight)

Show how to use this to update WSPDs and MCMC cost functions.

Implementation and testing on real data sets



Thank you!
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