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Outline

• Introduction to ERGM
• Current methods of parameter estimation:

– MCMCMLE: Markov chain Monte-Carlo estimation
– MPLE: Maximum pseudo-likelihood estimation

• Bayesian Approaches:
– Exponential families and variational inference
– Approximation of intractable families
– Application on ERGM
– Simulation study
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Introduction to ERGM

Network Notation

• m actors; n = m(m−1)
2 dyads

• Sociomatrix (adjacency matrix) Y : {yi,j}i,j=1,··· ,n

• Edge set {(i, j) : yi,j = 1}.
• Undirected network: {yi,j = yj,i = 1}
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ERGM

Exponential Family Random Graph Model (Frank and Strauss, 1986; Wasserman and
Pattison, 1996; Handcock, Hunter, Butts, Goodreau and Morris, 2008):

log[P (Y = yobs; η)] = ηTφ(yobs)− κ(η,Y), y ∈ Y

where

• Y is the random matrix
• η ∈ Ω ⊂ Rq is the vector of model parameters
• φ(y) is a q-vector of statistics
• κ(η,Y) = log

P
z∈Y exp{ηTφ(z)} is the normalizing factor, which is difficult to

calculate.
• R package: statnet
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Current estimation approaches for ERGM

MCMC-MLE (Geyer and Thompson 1992, Snijders, 2002; Hunter, Handcock, Butts,
Goodreau and Morris, 2008):

1. Set an initial value η0, for parameter η.
2. Generate MCMC samples of size m from Pη0 by Metropolis algorithm.
3. Iterate to obtain a maximizer η̃ of the approximate log-likelihood ratio:

(η − η0)
Tφ(yobs)− log

h 1

m

mX

i=1

exp
˘
(η − η0)

Tφ(Yi)
¯i

4. If the estimated variance of the approximate log-likelihood ratio is too large in
comparison to the estimated log-likelihood for η̃, return to step 2 with η0 = η̃.

5. Return η̃ as MCMCMLE.
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MPLE (Besag, 1975; Strauss and Ikeda, 1990):

Conditional formulation:

logit[P (Yij = 1|Y C
ij = yC

ij)] = ηTδ(yC
ij).

where δ(yC
ij) = φ(y+

ij) − φ(y−ij), the change in φ(y) when yij changes from 0 to 1
while the rest of network remains yC

ij.
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Comparison

Simulation study: van Duijn, Gile and Handcock (2008)

MCMC-MLE MPLE
• Slow-mixing
• Highly depends on initial values
• Be able to model various network

characteristics together.

• Deterministic model; computation is fast
• Unstable
• Dyadic-independent model;

could not capture higher-order network characteristics.



Bayesian Approaches

Idea:
Use prior specifications to deemphasize degenerate parameter values

Let pr(η) be an arbitrary prior distribution for η..
Choice of prior distributions for η?

pr(η) based on social theory or knowledge
Many conjugate prior families
⇒ Gutiérrez-Peña and Smith (1997), Yanagimoto and Ohnishi

(2005)

Standard conjugate prior (Diaconis and Ylvisaker 1979):
Let h(ν, γ) be the (q + 1) parameter exponential family with distribution:

pr(η; ν, γ) =
exp{νT η + γψ(η)}

c(γ, ν)
η ∈ Λ, γ > 0

where ψ(·) is a prespecified function (e.g., − log(c(η)).
August 7, 2006 JSM 2006



Reexpressing conjugate priors

pr(η; η0, γ) =
exp{−γD(η0, η)}

d(γ, η0)
η ∈ Λ, γ > 0

where D(η0, η) is the Kullback-Leibler divergence from the model
Pη(Y = y) to the model Pη0(Y = y).

This can be translated into a prior on the mean-values:

pr(µ;µ0, γ) =
exp{−γD(µ, µ0)}

d(γ, µ0)
µ ∈ int(C), γ > 0

August 7, 2006 JSM 2006



Posterior distributions

pr(µ|Y = y ;µ0, γ) =
exp{−D(g(y), µ)− γD(µ, µ0)}

d(γ + 1, µ0)
µ ∈ int(C), γ > 0

E(ν; ν0, γ) = ν0

E(µ;µ0, γ) = µ0

E(µ|Y = y ;µ0, γ) =
g(y) + γµ0

1 + γ

August 7, 2006 JSM 2006



Estimation

Under (component-wise) squared error loss in µ, the posterior mean is
optimal.

August 7, 2006 JSM 2006
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Non-degeneracy prior

Define the non-degeneracy prior

Pr(η) ∝ Pη(Y ∈ int(C))

η ∈ Λ

– a natural “reference prior" for random network models

August 7, 2006 JSM 2006
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Consider extending the exponential family to include the
standard exponential families that form the faces of C.

– The MLE is admissible as an estimator of µ under squared-error
loss. ⇒ Meeden, Geyer, et. al. (1998)

– The MLE is the Bayes estimator of µ under the “non-degeneracy"
prior distribution.

August 7, 2006 JSM 2006
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Implementation of Bayesian Posterior models

The Bayesian posterior of η has density

π(η|y) ∝ exp[η · (δµ0 + g(y))− (1 + δ)κ(η)].

To generate samples by a Metropolis-Hasting algorithm, we need to calculate a
Metropolis-Hastings ratio:

H(η′|η) =
exp[η′ · (δµ0 + g(y))]/ exp((1 + δ)κ(η′))

exp[η · (δµ0 + g(y))]/ exp((1 + δ)κ(η))

q(η|η′)
q(η′|η)

, (1)

where q(η′|η) is the proposal density. However, (1) contains intractable normalizing
constant κ(η), which needs to be approximated. A straightforward approach is
to approximate κ(η′) − κ(η) by MCMC (Geyer and Thompson, 1992), but the
computation will be extremely expensive.
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Auxiliary variable approach

Moller et al. (2006) proposed an efficient MCMC algorithm based on auxiliary
variables. The goal is to sample from a posterior density

π(η|y) ∝ π(η) exp(ηg(y)− κ(η)).

• Suppose x is an auxiliary variable defined on the same state space as that of y. It
has conditional density f(x|η, y) and posterior density

p(η, x|y) ∝ p(η, x, y) = f(x|η, y)π(η, y) = f(x|η, y)π(η)p(y|η).

• If (η, x) is the current state of the algorithm, propose first η′ with density p(η′|η, x)
and next x′ with density p(x′|η′, η, x). Here, we take the proposal density for
auxiliary variable x′ to be the same as likelihood, i.e.

p(x′|η′, η, x) = p(x′|η′) = exp(η′g(x′))/ exp(κ(η′)).
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• The Metropolis-Hasting ratio becomes

H(η′, x′|η, x) =
p(η′, x′|y)

p(η, x|y)

q(η, x|η′, x′)

q(η′, x′|η, x)

=
f(x′|η′, y)p(η′, y)

f(x|η, y)p(η, y)

p(x|η)p(η|η′, x′)

p(x′|η′)p(η′|η, x)

=
f(x′|η′, y)π(η′) exp(η′g(y))/ exp(κ(η′))

f(x|η, y)π(η) exp(ηg(y))/ exp(κ(η))

·
exp(ηg(x))/ exp(κ(η)) · p(η|η′, x′)

exp(η′g(x′))/ exp(κ(η′)) · p(η′|η, x)

• Finally, we have the M-H ratio as

H(η′, x′|η, x) =
f(x′|η′, y)π(η′) exp(η′g(y)) exp(ηg(x))p(η|η′, x′)

f(x|η, y)π(η) exp(ηg(y)) exp(η′g(x′))p(η′|η, x)
(2)

does not depend on normalizing constants.
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Note that:

For simplicity, we can assume that

p(η′|η, x) = p(η′|η)

does not depend on x.

Appropriate auxiliary density f(x|η, y) and proposal density p(η′|η) must be chosen
so that the algorithm has good mixing and convergence properties.
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Application to ERGM with uniform prior

2-star ERGM

Likelihood: p(y|η) = exp(ηg(y)− κ(η))

Uniform prior: η ∈ Θ =[ −1, 1]2.

Suppose η is the current state of the parameter, and η′ is the proposal. The algorithm
to sample from posterior is as follows:
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1. Approximate conditional density by

f(x|η, y) = exp[eηg(x)− κ(eη)],

where eη is MPLE.
2. Sample proposals η′ from Normal distribution with mean η, so that

p(η|η′)/p(η′|η) = 1. The standard deviations is adjustable.
3. Sample x′ from p(x′|η′) = exp(η′g(x′)− κ(η′) by M-H sampling.
4. The M-H ratio then reduces to

H(η′, x′|η, x) = I[η′ ∈ Θ]
exp(eηg(x′) + η′g(y) + ηg(x))

exp(eηg(x) + ηg(y) + η′g(x′))
.

5. Accept η′ with probability min{1, H(η′, x′|η, x)}.
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Laplace Approximations with Conjugate Priors

Basics

Let a(η) be a known function of η e.g. a(η) = η, or a(η) = η2.

We wish to compute the posterior mean of a(η) :

Eη[a(η)|y] =

Z

η∈Θ
a(η)p(η|y)dη.

The posterior distribution π(η|y) is given by

π(η|y) =
exp{µη − κ(η)}R

η∈Θ exp{µη − κ(η)}dη
.

where the posterior mean and effective degrees-of-freedom are.

µ =
δµ0 + g(y)

1 + δ
φ = 1 + δ
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Let f(η|y) = exp{µη − κ(η)}. The posterior expectation can be written as

Eη[a(η)|y] =

R
a(η)f(η|y)dηR

f(η|y)dη
.
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Define

h∗(η) = log a(η) + log f(η|y),

h(η) = log f(η|y).

The Laplace approximation to E[a(η)|y] has the form

Êη[a(η)|y] =
a(η∗)f(η∗|y)|−∇ 2h∗(η∗)|−1/2

f(η̂|y)|−∇ 2h(η̂)|−1/2
, (3)

where
η∗ := argsupηh

∗(η);

η̂ := argsupηh(η).

And ∇2h∗(η∗) and ∇2h(η̂) are the Hessian matrices of h∗ evaluated at η∗ and h
evaluated at η̂, respectively.
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Likelihood approximation

We know that
h(η) = log f(η|y) = µη − κ(η).

We can approximate the difference r(η, η0) = h(η)− h(η0) by

r̂m(η, η0) = µ(η − η0)− log
ˆ 1

m

mX

i=1

exp{(η − η0)g(Yi)
˜
, (4)

where Y1, · · · , Ym are i.i.d P (Y = y; η0).
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Iterative algorithms to estimate modes

Due to the conjugacy properties, we can estimate the mode of h(η) by stochastic
approximation analogous to the Markov chain Monte Carlo maximum likelihood
estimation (Hunter and Handcock) procedure we apply in likelihood distributions. The
Hessian matrix can be approximated by the same procedure.
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We derive that
∇h(η) = φ[µ−

∂κ(η)

∂η
].

So,

∇h(η) = φ[µ− Eηg(y)]

∇2h(η) = −φVarηg(y) = −φI(η)

where I(η) is the Fisher information matrix.

Newton-Raphson algorithm yields

η(k+1) = η(k) −
ˆ
∇2h(η(k))

˜−1∇h(η(k))

= η(k) +
ˆ
I(η(k)˜−1

h
µ− Eηg(y)

i
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Analogous to sampling distributions, the update step in iterative algorithm for posterior
distribution becomes: Sample y1, · · · , ym i.i.d P (Y = y; η(k)). Update as follows:

η(k+1) = η(k) +
n

Î(η(k))
o−1h

µ−
X

i

ω(k)
i gi

i
, (5)

where gobs and gi denote g(yobs) and g(yi) respectively.

ω(k)
i =

exp{[η(k) − η0]gi}Pm
j=1 exp{[η(k) − η0]gj}

(weight by inverse probability) and

Î(η(k)) =
n mX

i=1

ω(k)
i gig

t
i −

` mX

i=1

ω(k)
i gi

´` mX

i=1

ω(k)
i gi

´t
o

(approximated Fisher information matrix).
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Assume a(η) = η.

∇h∗(η) =
1

η
+ φ[µ− Eηg(y)]

∇2h∗(η) = −
1

η2
− φI(η)

Then, the approximate Fisher scoring method is implemented as

η(k+1) = η(k) +
h 1/φ

η(k)2
+ Î(η(k))

i−1h1/φ

η(k)
+ µ−

X

i

ω(k)
i gi

i
, (6)
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Final algorithm

• We estimate the mode of h(η), η̂ by equation (5).
• By the same MCMC samples, we estimate the mode of h∗(η), η∗ by equation (6).
• By equation (4), the Laplace approximation to E[a(η)|y] can be calculated as

Êη[a(η)|y] = a(η∗)
exp

˘
φµ(η∗ − η̂)

¯

ˆ
1
m

Pm
i=1 exp{(η∗ − η̂)g(Yi)}

˜φ

|−∇ 2h∗(η∗)|−1/2

|−∇ 2h(η̂)|−1/2

In particular we can easily compute:

Êη[η|y] posterior mean

ŜDη[η|y] posterior standard deviation

based on a single MCMC run (e.g., like that for the MC-MLE).


