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Context: analysis of
social networks

Represent interactions among people
and their environments as graphs

(often: vertices = people,
edges = pairwise interactions)

Goals:

Predict human behavior

Detect anomalous behavior

Handle varied types of graph data
and scale well to large networks
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Not a pipe, but a model of a pipe

René Magritte, The Treachery of Images, 1928–9

Mathematical modeling of social networks

Develop mathematical models
with a small number of meaningful numerical parameters

that generate graphs resembling real social networks

Why?

– Fitting the parameters to real data
  tells us how real social nets behave

– The parts of the real networks
  that do not match the model
  may be anomalous

– We can use the model to generate
  test data for other analysis algorithms
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Exponential random graph
model: graphs shaped by
their local structures

Define local features that
may be present in a graph:

• Presence of an edge
• Degree of a vertex
• Small subgraphs

Assign weights to features: positive = more likely, negative = less likely

Log-likelihood of G = sum of weights of features + normalizing constant

Different feature sets and weights give different models
capable of fitting different types of social network

Public-domain image by Mohylek on Wikimedia commons, http://commons.wikimedia.org/wiki/File:Magnifying.jpg
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Probabilistic reasoning in exponential random graphs

Most basic problem: pull the handle, generate a random graph from the model

With a generation subroutine,
we can also:

•Find normalizing constant

•Fit weights to data

•Understand typical behavior
  of graphs in this model
  (e.g. how many edges?)

•Detect unusual structures
  in real-world graphs

Crop of CC-BY-SA licensed image “Slot Machine” by Jeff Kubina on 
Flickr, http://www.flickr.com/photos/95118988@N00/347687569
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“The Mambo”, public artwork by Jack Mackie and Chuck Greening, Seattle, 1979. Modified from GFDL-licensed photo by 
Joe Mabel on Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Seattle_B%27way_Mambo_02.jpg

Standard method for
random generation:

Markov Chain Monte Carlo
(random walk)

Start with any graph

Repeatedly choose a random edge
to add or remove

Calculate change to log-likelihood

Choose whether to perform the update
(positive change score: always perform

negative change score: sometimes reject)

After enough steps, graph is random
with correct probability distribution
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The key algorithmic subproblem:

Add and remove edges in a dynamic graph

At each step, update feature counts
(how many of each type of small subgraph it has)

Because this is in the inner loop, it must be very fast

A telephone switchboard, an early
example of a dynamic graph

Photo by Joseph A. Carr, 1975,
available online under a free license at
http://commons.wikimedia.org/wiki/
File:JT_Switchboard_770x540.jpg
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MURI-funded work on this problem:

The h-index of a graph and its application to
dynamic subgraph statistics (with E. S. Spiro)
Presented at WADS, Banff, Canada, 2009.
Lecture Notes in Comp. Sci. 5664, 2009, pp. 278-289.

Shortlisted for best paper award.
Undirected graphs, feature = subgraph with ≤ 3 vertices

Extended dynamic subgraph statistics using h-index
parameterized data structures
(with M. T. Goodrich, D. Strash, and L. Trott)
in preparation

Directed graphs, larger numbers of vertices per feature
See poster session

New research still under development (with M. T. Goodrich, M. Löffler)

Geometric graphs and geometric features
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number of triangles

Interdependence among 3-vertex feature counts

So if we can maintain the number of triangles in a dynamic graph
we can easily compute all other counts
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Degree-based partitioning of a graph

Select a number D

Partition vertices into two subsets:
L: many vertices with degree less than D
H: few vertices with degree greater than D

Boys choosing sides for hockey on Sarnia Bay, Ontario, 
December 29, 1908. Public domain image from Library and 
Archives Canada / John Boyd Collection / PA-060732
http://www.collectionscanada.gc.ca/hockey/024002-2300-e.html
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What we store:
Number of paths through low-degree vertices

Maintain hash table C indexed by pairs (u,v) of vertices

C[u,v] = number of two-edge paths u—L—v

Hollerith 1890 census tabulator from http://www.columbia.edu/acis/history/census-tabulator.html
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When edge (u,v) is added or removed:

The number of triangles with the third vertex in L is stored in C[u,v]
(look it up there)

The number of triangles with a third vertex w in H
can be counted by examining all possibilities for w

(loop over all vertices in H and test whether each one forms a triangle)

If u belongs to L, add degree(v) to C[u,w] for each neighbor w of u
(perform a symmetric update if v belongs to L) 

(Very infrequently) update the partition into low and high degree
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How much time does it take per change?

Finding triangles involving changed edge takes O(|H|)

Each edge is involved in O(D) x—L—x paths, so
updating hash table after a change takes O(D)

If L/H partition ever changes, update counts
for all x—L—x paths through moved vertex

taking time O(D2)

How to choose D so |H| + D is small
and partition changes infrequently?

Modified from CC-BY licensed photo by smaedli on Flickr,
http://www.flickr.com/photos/smaedli/3271558744/
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A detour into bibliometrics

How to measure productivity of an academic researcher?

Total publication count: encourages many low-impact papers

Total citation count: unduly influenced by few high-impact pubs

h-index [J. E. Hirsch, PNAS 2005]: 
maximum number such that h papers each have ≥ h citations

CC-BY-SA-licensed image by Jhodson from Wikimedia
commons, http://commons.wikimedia.org/wiki/File:Bookspile.jpg

Public-domain image by Ael 2 from Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:H-index_plot.PNG
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The h-index of a graph:

Maximum number such that
h vertices each have ≥ h neighbors

H = set of h high-degree vertices
L = remaining vertices, degree ≤ h

Provides optimal tradeoff
between |H| and D

Never more than sqrt(m)
Else H would have too many edges
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Results:

We can maintain the h-index of a dynamic graph
in constant time per update

(details beyond the scope of this talk)

A relaxed degree partition based on the h-index changes very rarely
On average, some vertex changes sides once in every O(h) updates

As a consequence, we can maintain triangle counts and change scores
in time O(h) per update

All algorithms are simple and implementable

Later work (Trott poster) generalizes this to more complex features

Still need to do: implement them and test their actual performance
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