Decision Theoretic Foundations for Statistical Network Models

Carter T. Butts

Department of Sociology and

Institute for Mathematical Behavioral Sciences

University of California, Irvine buttsc@uci.edu

UCI MURI AHM, 12/08/09

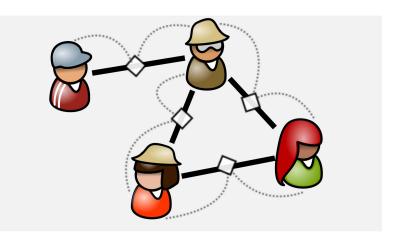
This work was supported by ONR award N00014-08-1-1015.

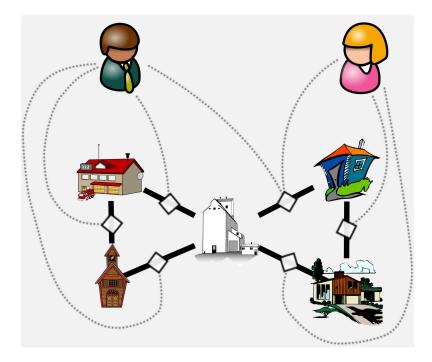
Problem: Interpreting Cross-sectional Network Models

- Tremendous progress in recent decades on cross-sectional network models Robins and Morris (2007); Wasserman and Robins (2005)
- ► Powerful, but often difficult to interpret; no general way to relate to agent behavior
 - Goodreau et al. (2008) make an attempt, but lack formal justification; Snijders (2001) provides at least one special case (mostly ignored)
- Some success in dynamic modeling area (e.g., Snijders (1996; 2005)) but dynamic data *much* harder to obtain
 - Also, growing agent-based and game theoretic literature (see e.g., Jackson (2006)), but no general link to inference
- Question: Can we produce a behaviorally reasonable micro-foundation for (at least some) cross-sectional network models?
 - ▷ Should be based on a behaviorally credible decision process
 - Should allow deduction of equilibrium network behavior
 - > Should (at least sometimes) allow inference for actor preferences given observed structure
- ► Answer: Yes, we can! (In many cases, at least.)

Choosing Your Friends – or Others'

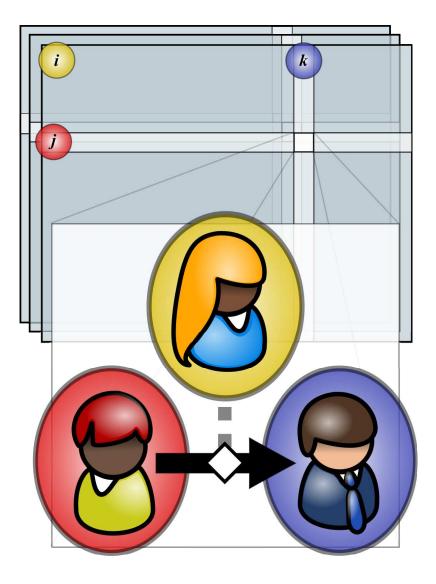
- Assume a set of N agents, A, whose actions jointly determine a network on n vertices with adjacency matrix $Y \in \mathcal{Y}_n$
 - Not required that A = V; agents may or may not be vertices (e.g., in designed networks)
 - Y is manifest relation, over which agents have preferences
 - Y can be directed/undirected,
 hypergraphic, etc. (but we treat as dyadic here)





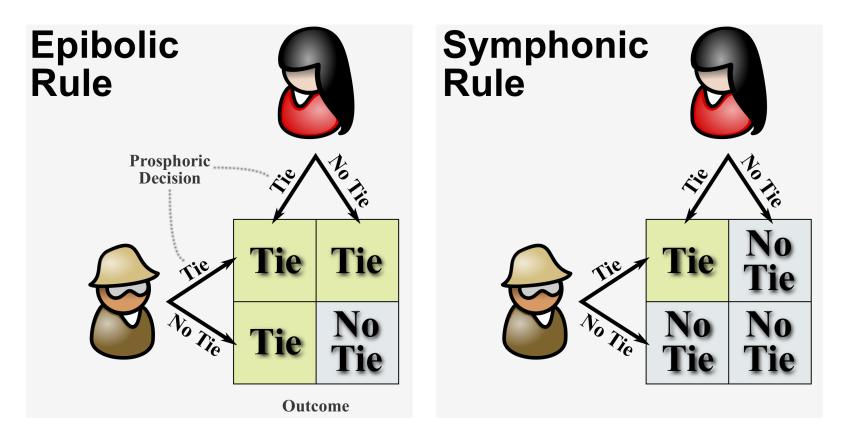
Resolving Relationships

- From choices to outcomes: the prosphoric array
 - ▷ Let $c_{ij} \subseteq A$ be the minimum lexically ordered ℓ -tuple of agents whose behaviors determine Y_{ij}
 - ▷ Let $P \in \mathcal{P}_N$ be an $\ell \times N \times N$ array, w/ P_{ijk} recording the choice of *i*th agent of c_{jk} about Y_{ij}
 - $\triangleright \text{ Resolution function } r: \mathcal{P}_N \mapsto \mathcal{Y}_n \text{ maps}$ individual choices to manifest relations
 - $\diamond c_{jki}$ need not be v_i or v_j (but often will be)
 - ♦ Agents choose outcomes directly only when $\ell = 1$ (*unilateral* control); otherwise, relationship is *multilateral*



Bilateral Resolution Functions

- Bilateral relationships an important special case; include most undirected social ties
- Two common types (with natural generalizations for $\ell > 2$):
 - ▷ Epibolic either party can impose the tie upon the other
 - ▷ Symphonic either party can prevent/sever the tie



The Decision Model

- ► Agents choose the elements of *P* they control, under the following assumptions:
 - Decisions are instantaneous and element-wise
 - \triangleright Decisions are myopic, and treat other elements of *P* as being fixed
 - ▷ Agent utilities, u, are functions of r(P) = Y (and possibly covariates)
 - Decisions are made using a logistic choice process (McFadden, 1973)
- ► Consider a hypothetical move from state P⁽ⁱ⁻¹⁾ to Pⁱ, in which agent a evaluates the k, l edge (a being the jth controller for that edge in P). Then the chance of a's selecting Pⁱ_{jkl} = 1 is given by

$$\Pr\left(P_{jkl}^{(i)} = \left(p^{(i-1)}\right)_{jkl}^{+} \left| \left(P^{(i-1)}\right)_{jkl}^{c} = \left(p^{(i-1)}\right)_{jkl}^{c}, u_{a}\right) \right. \\ = \log i t^{-1} \left[u_{a} \left(r \left(\left(p^{(i-1)}\right)_{jkl}^{+}\right) \right) - u_{a} \left(r \left(\left(p^{(i-1)}\right)_{jkl}^{-}\right) \right) \right]$$
(1)

- $\triangleright P_{ijk}^c$ indicates all elements of P other than the i, j, kth
- $\triangleright P_{ijk}^{+}$ indicates P_{ijk}^{c} with $P_{ijk} = 1$
- $\triangleright P^{-}_{ijk}$ indicates P^{c}_{ijk} with $P_{ijk} = 0$
- $\triangleright u_a$ is the utility function of agent a

The Utility Function

- We have already said that u_a is a function of Y (via P)
- ► Particularly important case drawn from theory of *potential games*
 - ▷ General defn: Let *X* by a strategy set, *u* a vector utility functions, and *A* a set of players. Then (A, X, u) is said to be a *potential game* if $\exists \rho : X \mapsto \mathbb{R}$ such that, for all $i \in A$, $u_i(x'_i, x_{-i}) - u_i(x_i, x_{-i}) = \rho(x'_i, x_{-i}) - \rho(x_i, x_{-i})$ for all $x, x' \in X$.
 - $\triangleright \text{ Our case: assume exists a$ *potential function* $<math>\rho : \mathcal{Y}_n \mapsto \mathbb{R} \text{ such that}$ $\rho\left(Y_{kl}^+\right) \rho\left(Y_{kl}^-\right) = u_a\left(Y_{kl}^+\right) u_a\left(Y_{kl}^-\right) \text{ for all } a \in c_{kl} \text{ and all } (k,l)$
- ▶ In the above case, chance of a selecting $P_{jkl}^i = 1$ then becomes

$$\Pr\left(P_{jkl}^{(i)} = \left(p^{(i-1)}\right)_{jkl}^{+} \left| \left(P^{(i-1)}\right)_{jkl}^{c} = \left(p^{(i-1)}\right)_{jkl}^{c}, \rho\right) \\ = \log i t^{-1} \left[\rho\left(r\left(\left(p^{(i-1)}\right)_{jkl}^{+}\right)\right) - \rho\left(r\left(\left(p^{(i-1)}\right)_{jkl}^{-}\right)\right) \right]$$
(2)

- $\triangleright\,$ So, where ρ exists, decision probabilities can be derived from effect on ρ (which is not agent-specific)
- Many realistic models fall into this class (example will follow)

When Are Decisions Made?

Some observations about the decision making process

- Agents cognitively bounded can't evaluate all ties simultaneously (or continuously)
- Updating occurs in continuous time; exact simultaneity across agents a rare event
- Modeling framework: continuous time edge updating process
 - $\triangleright~$ Unobserved, continuous time process gives agents opportunities to modify P
 - \triangleright Formally, defined as process $X^{(1)}, X^{(2)}, \ldots$ of random (j, k, l, t) tuples
 - $\diamond a(X^{(i)}) = j$ is updating agent, $e_s(X^{(i)} = k$ and $e_r(X^{(i)}) = l$ are the sender/receiver of the hypothetical edge, and $\tau(X^{(i)}) = t$ is the event time
 - ♦ Assume X independent of P, and $\sum_{x:\tau(x) < t} I(a(x) = i, e_s(x) = j, e_r(x) = k) \to \infty$ as $t \to \infty$ a.s. for all $\{j, k\}$ (directed case (j, k)) in $E^*(\mathcal{Y}_n)$ and all $i \in c_{jk}$ (i.e., all edges, agents update at least occasionally)

Putting It All Together: Behavioral Equilibrium

With the above, we demonstrate the following theorem:

Theorem 1. Let *Y* be the adjacency structure arising from the behavioral model specified by $(\mathcal{Y}_n, A, \ell, c, r, u)$ under edge updating process *X*, and let $Y^{[t]}$ be the state of *Y* at time *t*. If ρ is a potential for $(A, \ell, c, \mathcal{Y}_n)$, and *X* is such that

- 1. X is independent of P; and
- $\begin{array}{ll} \text{2. } \sum_{x:\tau(x) < t} I\left(a\left(x\right) = i, e_s(x) = j, e_r(x) = k\right) \rightarrow \infty \text{ as } t \rightarrow \infty \text{ a.s. for all } \{j,k\} \\ \text{(directed case } (j,k)\text{) in } E^*(\mathcal{Y}_n) \text{ and all } i \in c_{jk}\text{,} \end{array}$

then $Y^{[t]}$ converges in distribution to $\Pr(Y^{[t]} = y) = |\{p : r(p) = y\}| \frac{\exp[\rho(y)]}{\sum_{p' \in \mathcal{P}_n} \exp[\rho(r(p'))]}$ on support \mathcal{Y}_n as $t \to \infty$.

In other words, we can go from utilities (via ρ) to a well-specified equilibrium distribution!

Interpreting the Equilibrium

• Note that we can re-write equilibrium distribution in terms of Y:

$$\Pr\left(Y^{[t]} = y\right) = \frac{|\{p : r(p) = y\}| \exp\left[\rho\left(y\right)\right]}{\sum_{y' \in \mathcal{Y}_n} |\{p : r(p) = y'\}| \exp\left[\rho\left(y'\right)\right]}$$
(3)

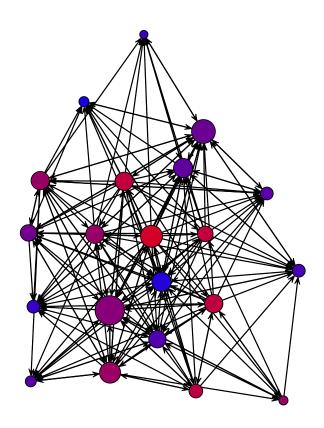
- ► This is an exponential random graph (ERG) form for *Y*, with graph potential $\ln |\{p : r(p) = y\}| + \rho(y)$
 - Preferred form for simulation/inference, with reasonably well-developed theory and tools (e.g., Handcock et al. (2003))
 - Behavior controlled by actor preferences, plus an offset due to the resolution function – both "rules" and preferences matter!

The Effect of Multilateral Control

- ► How, exactly, do common situations like multilateral edge control affect equilibrium?
- ► Let $s(Y) = |\{p : r(p) = y\}|$. Note that, when r is edgewise decomposable, $s(Y) = \prod s'(Y_{ij})$; if also homogeneous, becomes $s'(1)^{\sum Y_{ij}} s'(0)^{\sum (1-Y_{ij})}$
- Can show from the above that $\ln s(Y) = (\sum Y_{ij}) \ln (s'(1)/s'(0)) + \alpha$, where s'(1) is the number of $P_{\cdot ij}$ combinations leading to $Y_{ij} = 1$, s'(0) is the number of $P_{\cdot ij}$ combinations leading to $Y_{ij} = 0$, and α is a constant (can be dropped)
 - \triangleright Thus, imposing multilateral control is equivalent to translating the edge term by a fixed amount that depends only on r!
 - ▷ In bilateral case, s'(1)/s'(0) equals either 3 (epibolic) or 1/3 (symphonic); offset thus equals ± 1.1
- Important (good) news: to estimate ρ from observed Y, we can fit a standard ERG model to Y, and then adjust the estimated parameters for r
 - Under unilateral edge control, no correction is needed; more complex multilateral rules may require additional terms, but principle is same

Empirical Example: Advice-Seeking Among Managers

- Sample empirical application from Krackhardt (1987): self-reported advice-seeking among 21 managers in a high-tech firm
 - Additional covariates: friendship, authority (reporting)
- Demonstration: selection of potential behavioral mechanisms via ERGs
 - Models parameterized using utility components
 - Model parameters estimated using maximum likelihood (Geyer-Thompson)
 - Model selection via AIC



Advice-Seeking ERG – Model Comparison

► First cut: models with independent dyads:

	Deviance	Model df	AIC	Rank
Edges	578.43	1	580.43	7
Edges+Sender	441.12	21	483.12	4
Edges+Covar	548.15	3	554.15	5
Edges+Recip	577.79	2	581.79	8
Edges+Sender+Covar	385.88	23	431.88	2
Edges+Sender+Recip	405.38	22	449.38	3
Edges+Covar+Recip	547.82	4	555.82	6
Edges+Sender+Covar+Recip	378.95	24	426.95	1

Elaboration: models with triadic dependence:

	Deviance	Model df	AIC	Rank
Edges+Sender+Covar+Recip	378.95	24	426.95	4
Edges+Sender+Covar+Recip+CycTriple	361.61	25	411.61	2
Edges+Sender+Covar+Recip+TransTriple	368.81	25	418.81	3
Edges+Sender+Covar+Recip+CycTriple+TransTriple	358.73	26	410.73	1

Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates), with additional effects for reciprocated, cycle-completing, and transitive-completing edges.

Advice-Seeking ERG – AIC Selected Model

Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$		Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$	
Edges	-1.022	0.137	0.0000	* * *	Sender14	-1.513	0.231	0.0000	* * *
Sender2	- 2.039	0.637	0.0014	* *	Sender15	16.605	0.336	0.0000	* * *
Sender3	0.690	0.466	0.1382		Sender16	-1.472	0.232	0.0000	* * *
Sender4	-0.049	0.441	0.9112		Sender17	-2.548	0.197	0.0000	* * *
Sender5	0.355	0.495	0.4734		Sender18	1.383	0.214	0.0000	* * *
Sender6	-4.654	1.540	0.0025	* *	Sender19	- 0.601	0.190	0.0016	* *
Sender7	-0.108	0.375	0.7726		Sender20	0.136	0.161	0.3986	
Sender8	-0.449	0.479	0.3486		Sender21	0.105	0.210	0.6157	
Sender9	0.393	0.496	0.4281		Reciprocity	0.885	0.081	0.0000	* * *
Sender10	0.023	0.555	0.9662		Edgecov (Reporting)	5.178	0.947	0.0000	* * *
Sender11	- 2.864	0.721	0.0001	* * *	Edgecov (Friendship)	1.642	0.132	0.0000	* * *
Sender12	- 2.736	0.331	0.0000	* * *	CycTriple	-0.216	0.013	0.0000	* * *
Sender13	-0.986	0.194	0.0000	* * *	TransTriple	0.090	0.003	0.0000	* * *
Null Dev 582.24; Res Dev 358.73 on 394 df									

Some observations...

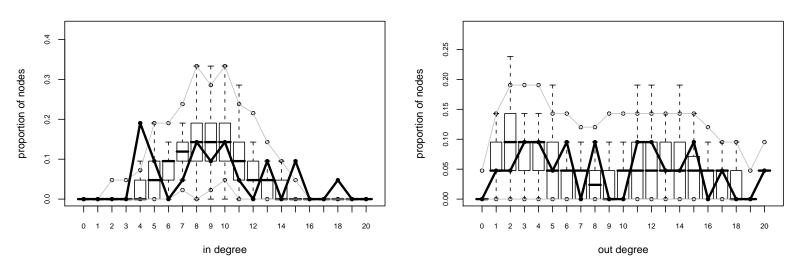
- Arbitrary edges are costly for most actors
- Edges to friends and superiors are "cheaper" (or even positive payoff)
- ▷ Reciprocating edges, edges with transitive completion are cheaper...
- ▷ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?

Linking low-level processes and aggregate outcomes is a non-trivial problem

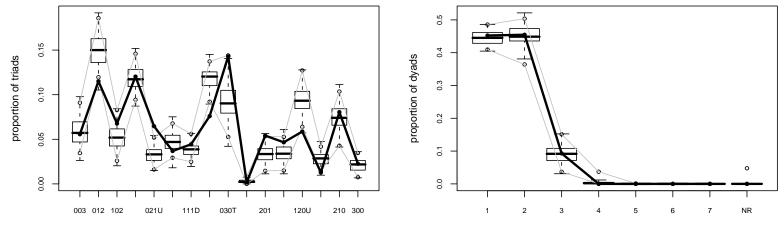
- Not every process leads to intelligible results
- Not all of the above are behaviorally plausible

Potential games for cross-sectional (ERG) network models

- Allow us to derive random cross-sectional behavior from strategic interaction
- Provide sufficient conditions for ERG parameters to be interpreted in terms of preferences
- Allows for testing of competing behavioral models (assuming scope conditions are met!)
- ► Approach seems promising, but many questions remain
 - Can we characterize utilities which lead to identifiable models?
 - How can we leverage other properties of potential games?



Goodness-of-fit diagnostics



triad census

minimum geodesic distance

Exponential Families for Random Graphs

For random graph G w/countable support G, pmf is given in ERG form by

$$\Pr(G = g | \theta) = \frac{\exp\left(\theta^T \mathbf{t}(g)\right)}{\sum_{g' \in \mathcal{G}} \exp\left(\theta^T \mathbf{t}(g')\right)} I_{\mathcal{G}}(g)$$
(4)

► $\theta^T \mathbf{t}$: linear predictor

- $\triangleright \mathbf{t}: \mathcal{G} \to \mathbb{R}^m$: vector of sufficient statistics
- $\triangleright \ \theta \in \mathbb{R}^m$: vector of parameters
- $\triangleright \sum_{g' \in \mathcal{G}} \exp(\theta^T \mathbf{t}(g'))$: normalizing factor (aka partition function, Z)
- Intuition: ERG places more/less weight on structures with certain features, as determined by t and θ
 - \triangleright Model is complete for pmfs on $\mathcal G$, few constraints on t

Building Potentials: Independent Edge Effects

General procedure

- \triangleright Identify utility for actor *i*
- \triangleright Determine difference in u_i for single edge change
- Find ρ such that utility difference is equal to utility difference for all u_i
- Linear combinations of payoffs

> If
$$u_i (\mathbf{y}) = \sum_j u_i^{(j)} (\mathbf{y})$$
,
 $\rho (\mathbf{y}) = \sum_j \rho_i^{(j)} (\mathbf{y})$

Edge payoffs (homogeneous)

$$\triangleright u_{i} (\mathbf{y}) = \theta \sum_{j} y_{ij}$$
$$\triangleright u_{i} (\mathbf{y}_{ij}^{+}) - u_{i} (\mathbf{y}_{ij}^{-}) = \theta$$
$$\triangleright \rho (\mathbf{y}) = \theta \sum_{i} \sum_{j} y_{ij}$$

 \triangleright Equivalence: p_1 /Bernoulli density effect

Edge payoffs (inhomogeneous)

$$\triangleright u_{i} (\mathbf{y}) = \theta_{i} \sum_{j} y_{ij}$$
$$\triangleright u_{i} (\mathbf{y}_{ij}^{+}) - u_{i} (\mathbf{y}_{ij}^{-}) = \theta_{i}$$
$$\triangleright \rho (\mathbf{y}) = \sum_{i} \theta_{i} \sum_{j} y_{ij}$$

- \triangleright Equivalence: p_1 expansiveness effect
- Edge covariate payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij} x_{ij}$$
$$\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \theta x_{ij}$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j} y_{ij} x_{ij}$$

 Equivalence: Edgewise covariate effects (netlogit)

Building Potentials: Dependent Edge Effects

Reciprocity payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij} y_{ji}$$
$$\triangleright u_{i} \left(\mathbf{y}_{ij}^{+} \right) - u_{i} \left(\mathbf{y}_{ij}^{-} \right) = \theta y_{ji}$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j < i} y_{ij} y_{ji}$$

- \triangleright Equivalence: p_1 reciprocity effect
- ► 3-Cycle payoffs

$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j \neq i} \sum_{k \neq i, j} y_{ij} y_{jk} y_{ki}$$
$$\triangleright u_{i}\left(\mathbf{y}_{ij}^{+}\right) - u_{i}\left(\mathbf{y}_{ij}^{-}\right) = \theta \sum_{k \neq i, j} y_{jk} y_{ki}$$
$$\triangleright \rho\left(\mathbf{y}\right) = \frac{\theta}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} y_{ij} y_{jk} y_{ki}$$

▷ Equivalence: Cyclic triple effect

Transitive completion payoffs

$$\theta \sum_{j \neq i} \sum_{k \neq i,j} \begin{bmatrix} y_{ij} y_{ki} y_{kj} + y_{ij} y_{ik} y_{jk} \\ + y_{ij} y_{ik} y_{kj} \end{bmatrix}$$

 $\triangleright u_i \left(\mathbf{y}_{ij}^+ \right) - u_i \left(\mathbf{y}_{ij}^- \right) = \\ \theta \sum_{k \neq i,j} \left[y_{ki} y_{kj} + y_{ik} y_{jk} + y_{ik} y_{kj} \right]$

$$\triangleright \ \rho \left(\mathbf{y} \right) = \theta \sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} y_{ij} y_{ik} y_{kj}$$

Equivalence: Transitive triple effect

Additional Insights from Potential Game Theory

- Game-theoretic properties of the behavioral model
 - ▷ Local maxima of ρ over \mathcal{Y}_n correspond to Nash equilibria in pure strategies; global maxima of ρ correspond to stochastically stable Nash equilibria in pure strategies
 - $\diamond\,$ At least one maximum must exist, since ρ is bounded above for any given $\theta\,$
 - Fictitious play property; Nash equilibria compatible with best responses to mean strategy profile for population (interpreted as a mixed strategy)
- Implications for simulation, model behavior
 - $\triangleright\,$ Multiplying θ by a constant $\alpha\to\infty$ will drive the system to its SSNE
 - Likewise, best response dynamics (equivalent to conditional stepwise ascent) always leads to a NE
 - For degenerate models, "frozen" structures represent Nash equilibria in the associated potential game
 - Suggests a social interpretation of degeneracy in at least some cases: either correctly identifies robust social regimes, or points to incorrect preference structure

Proof Sketch for Potential Game Theorem (Unilateral Dyadic Case)

Assume an updating opportunity arises for y_{ij} , and assume that player k has control of y_{ij} . By the logistic choice assumption,

$$\Pr\left(\mathbf{Y} = \mathbf{y}_{ij}^{+} | \mathbf{Y}_{ij}^{c} = \mathbf{y}_{ij}^{c}\right) = \frac{\exp\left(u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right)}{\exp\left(u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right) + \exp\left(u_{k}\left(\mathbf{y}_{ij}^{-}\right)\right)}$$

$$= \left[1 + \exp\left(u_{k}\left(\mathbf{y}_{ij}^{-}\right) - u_{k}\left(\mathbf{y}_{ij}^{+}\right)\right)\right]^{-1}.$$
(6)

Since u, \mathcal{Y} form a potential game, $\exists \rho : \rho\left(\mathbf{y}_{ij}^{+}\right) - \rho\left(\mathbf{y}_{ij}^{-}\right) = u_k\left(\mathbf{y}_{ij}^{+}\right) - u_k\left(\mathbf{y}_{ij}^{-}\right) \forall k, (i, j), \mathbf{y}_{ij}^{c}$. Therefore, $\Pr\left(\mathbf{Y} = \mathbf{y}_{ij}^{+} \middle| \mathbf{Y}_{ij}^{c} = \mathbf{y}_{ij}^{c}\right) = \left[1 + \exp\left(\rho\left(\mathbf{y}_{ij}^{-}\right) - \rho\left(\mathbf{y}_{ij}^{+}\right)\right)\right]^{-1}$. Now assume that the updating opportunities for \mathbf{Y} occur sequentially such that (i, j) is selected independently of \mathbf{Y} , with positive probability for all (i, j). Given arbitrary starting point $\mathbf{Y}^{(0)}$, denote the updated sequence of matrices by $\mathbf{Y}^{(0)}, \mathbf{Y}^{(1)}, \ldots$. This sequence clearly forms an irreducible and aperiodic Markov chain on \mathcal{Y} (so long as ρ is finite); it is known that this chain is a random scan Gibbs sampler on \mathcal{Y} with equilibrium distribution $\Pr(\mathbf{Y} = \mathbf{y}) = \frac{\exp(\rho(\mathbf{y}))}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp(\rho(\mathbf{y}'))}$, which is an ERG with potential ρ . By the ergodic theorem, then $\mathbf{Y}^{(i)} \xrightarrow[i \to \infty]{} ERG(\rho(\mathbf{Y}))$. QED.

1 References

- Goodreau, S. M., Kitts, J. A., and Morris, M. (2008). Birds of a feather, or friend of a friend?: Using exponential random graph models to investigate adolescent social networks. *Demography*, 46(1):103–125.
- Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2003). statnet: A suite of r packages for the statistical modeling of social networks.
- Jackson, M. (2006). A survey of models of network formation: Stability and efficiency. In Demange, G. and Wooders, M., editors, *Group Formation Economics: Networks, Clubs, and Coalitions*. Cambridge University Press, Cambridge.
- Krackhardt, D. (1987). Cognitive social structures. *Social Networks*, 9(2):109–134.
- McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In Zarembka, P., editor, *Frontiers in Econometrics*. Academic Press.
- Robins, G. and Morris, M. (2007). Advances in exponential random graph (p^*) models. *Social Networks*, 29:169–172.

- Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change. *Journal of Mathematical Sociology*, 23:149–172.
- Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. *Sociological Methodology*, 31:361–395.
- Snijders, T. A. B. (2005). Models for longitudinal network data.
 In Carrington, P. J., Scott, J., and Wasserman, S., editors, *Models and Methods in Social Network Analysis*, pages 215– 247. Cambridge University Press, New York.
- Wasserman, S. and Robins, G. (2005). An introduction to random graphs, dependence graphs, and *p**. In Carrington,
 P. J., Scott, J., and Wasserman, S., editors, *Models and Methods in Social Network Analysis*, chapter 10, pages 192– 214. Cambridge University Press, Cambridge.