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Problem: Interpreting
Cross-sectional Network Models

◮ Tremendous progress in recent decades on cross-sectional network models
Robins and Morris (2007); Wasserman and Robins (2005)

◮ Powerful, but often difficult to interpret; no general way to relate to agent behavior

⊲ Goodreau et al. (2008) make an attempt, but lack formal justification; Snijders (2001)

provides at least one special case (mostly ignored)

◮ Some success in dynamic modeling area (e.g., Snijders (1996; 2005)) but dynamic
data much harder to obtain

⊲ Also, growing agent-based and game theoretic literature (see e.g., Jackson (2006)), but no

general link to inference

◮ Question: Can we produce a behaviorally reasonable micro-foundation for (at least
some) cross-sectional network models?

⊲ Should be based on a behaviorally credible decision process
⊲ Should allow deduction of equilibrium network behavior

⊲ Should (at least sometimes) allow inference for actor preferences given observed structure

◮ Answer: Yes, we can! (In many cases, at least.)
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Choosing Your Friends – or
Others’

◮ Assume a set of N agents, A,

whose actions jointly determine

a network on n vertices with

adjacency matrix Y ∈ Yn

⊲ Not required that A = V ; agents
may or may not be vertices (e.g., in
designed networks)

⊲ Y is manifest relation, over which
agents have preferences

⊲ Y can be directed/undirected,

hypergraphic, etc. (but we treat as

dyadic here)
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Resolving Relationships

◮ From choices to outcomes: the

prosphoric array

⊲ Let cij ⊆ A be the minimum lexically
ordered ℓ-tuple of agents whose
behaviors determine Yij

⊲ Let P ∈ PN be an ℓ × N × N array,
w/Pijk recording the choice of ith agent
of cjk about Yij

⊲ Resolution function r : PN 7→ Yn maps
individual choices to manifest relations

⋄ cjki need not be vi or vj (but often will be)

⋄ Agents choose outcomes directly only

when ℓ = 1 (unilateral control); otherwise,

relationship is multilateral
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Bilateral Resolution Functions
◮ Bilateral relationships an important special case; include most undirected social ties

◮ Two common types (with natural generalizations for ℓ > 2):

⊲ Epibolic – either party can impose the tie upon the other

⊲ Symphonic – either party can prevent/sever the tie
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The Decision Model
◮ Agents choose the elements of P they control, under the following assumptions:

⊲ Decisions are instantaneous and element-wise
⊲ Decisions are myopic, and treat other elements of P as being fixed
⊲ Agent utilities, u, are functions of r(P ) = Y (and possibly covariates)

⊲ Decisions are made using a logistic choice process (McFadden, 1973)

◮ Consider a hypothetical move from state P (i−1) to P i, in which agent a evaluates the
k, l edge (a being the jth controller for that edge in P ). Then the chance of a’s
selecting P i

jkl = 1 is given by
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⊲ P c
ijk

indicates all elements of P other than the i, j, kth

⊲ P+
ijk

indicates P c
ijk

with Pijk = 1

⊲ P−
ijk

indicates P c
ijk

with Pijk = 0

⊲ ua is the utility function of agent a
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The Utility Function
◮ We have already said that ua is a function of Y (via P )

◮ Particularly important case drawn from theory of potential games

⊲ General defn: Let X by a strategy set, u a vector utility functions, and A a set of players.
Then (A, X, u) is said to be a potential game if ∃ ρ : X 7→ R such that, for all i ∈ A,
ui

`

x′
i, x−i

´

− ui (xi, x−i) = ρ
`

x′
i, x−i

´

− ρ (xi, x−i) for all x, x′ ∈ X.

⊲ Our case: assume exists a potential function ρ : Yn 7→ R such that

ρ
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for all a ∈ ckl and all (k, l)

◮ In the above case, chance of a selecting P i
jkl = 1 then becomes
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⊲ So, where ρ exists, decision probabilities can be derived from effect on ρ (which is not
agent-specific)

⊲ Many realistic models fall into this class (example will follow)
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When Are Decisions Made?

◮ Some observations about the decision making process

⊲ Agents cognitively bounded – can’t evaluate all ties simultaneously (or
continuously)

⊲ Updating occurs in continuous time; exact simultaneity across agents a rare

event

◮ Modeling framework: continuous time edge updating process

⊲ Unobserved, continuous time process gives agents opportunities to modify P

⊲ Formally, defined as process X(1), X(2), . . . of random (j, k, l, t) tuples

⋄ a(X(i)) = j is updating agent, es(X(i) = k and er(X(i)) = l are the sender/receiver of
the hypothetical edge, and τ(X(i)) = t is the event time

⋄ Assume X independent of P , and
P

x:τ(x)<t I (a (x) = i, es(x) = j, er(x) = k) → ∞

as t → ∞ a.s. for all {j, k} (directed case (j, k)) in E∗(Yn) and all i ∈ cjk (i.e., all

edges, agents update at least occasionally)
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Putting It All Together:
Behavioral Equilibrium

◮ With the above, we demonstrate the following theorem:

Theorem 1. Let Y be the adjacency structure arising from the behavioral model specified by

(Yn, A, ℓ, c, r, u) under edge updating process X , and let Y [t] be the state of Y at time t.

If ρ is a potential for (A, ℓ, c,Yn), and X is such that

1. X is independent of P ; and

2.
∑

x:τ(x)<t I (a (x) = i, es(x) = j, er(x) = k) → ∞ as t → ∞ a.s. for all {j, k}

(directed case (j, k)) in E∗(Yn) and all i ∈ cjk,

then Y [t] converges in distribution to

Pr
(

Y [t] = y
)

= |{p : r(p) = y}| exp[ρ(y)]
P

p′∈Pn
exp[ρ(r(p′))] on support Yn as t → ∞.

◮ In other words, we can go from utilities (via ρ) to a well-specified equilibrium
distribution!
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Interpreting the Equilibrium

◮ Note that we can re-write equilibrium distribution in terms of Y :

Pr
(

Y [t] = y
)

=
|{p : r(p) = y}| exp [ρ (y)]

∑

y′∈Yn
|{p : r(p) = y′}| exp [ρ (y′)]

(3)

◮ This is an exponential random graph (ERG) form for Y , with graph potential
ln |{p : r(p) = y}| + ρ(y)

⊲ Preferred form for simulation/inference, with reasonably well-developed theory
and tools (e.g., Handcock et al. (2003))

⊲ Behavior controlled by actor preferences, plus an offset due to the resolution

function – both “rules” and preferences matter!
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The Effect of Multilateral
Control

◮ How, exactly, do common situations like multilateral edge control affect equilibrium?

◮ Let s(Y ) = |{p : r(p) = y}|. Note that, when r is edgewise decomposable,
s(Y ) =

Q

s′(Yij); if also homogeneous, becomes s′(1)
P

Yij s′(0)
P

(1−Yij)

◮ Can show from the above that ln s(Y ) = (
P

Yij) ln (s′(1)/s′(0)) + α, where s′(1) is
the number of P·ij combinations leading to Yij = 1, s′(0) is the number of P·ij

combinations leading to Yij = 0, and α is a constant (can be dropped)

⊲ Thus, imposing multilateral control is equivalent to translating the edge term by a fixed
amount that depends only on r!

⊲ In bilateral case, s′(1)/s′(0) equals either 3 (epibolic) or 1/3 (symphonic); offset thus equals

±1.1

◮ Important (good) news: to estimate ρ from observed Y , we can fit a standard ERG
model to Y , and then adjust the estimated parameters for r

⊲ Under unilateral edge control, no correction is needed; more complex multilateral rules may

require additional terms, but principle is same
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Empirical Example: Advice-Seeking Among
Managers

◮ Sample empirical application from
Krackhardt (1987): self-reported
advice-seeking among 21 managers in a
high-tech firm

⊲ Additional covariates: friendship, authority

(reporting)

◮ Demonstration: selection of potential
behavioral mechanisms via ERGs

⊲ Models parameterized using utility components
⊲ Model parameters estimated using maximum

likelihood (Geyer-Thompson)

⊲ Model selection via AIC
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Advice-Seeking ERG – Model
Comparison

◮ First cut: models with independent dyads:

Deviance Model df AIC Rank

Edges 578.43 1 580.43 7

Edges+Sender 441.12 21 483.12 4

Edges+Covar 548.15 3 554.15 5

Edges+Recip 577.79 2 581.79 8

Edges+Sender+Covar 385.88 23 431.88 2

Edges+Sender+Recip 405.38 22 449.38 3

Edges+Covar+Recip 547.82 4 555.82 6

Edges+Sender+Covar+Recip 378.95 24 426.95 1

◮ Elaboration: models with triadic dependence:

Deviance Model df AIC Rank

Edges+Sender+Covar+Recip 378.95 24 426.95 4

Edges+Sender+Covar+Recip+CycTriple 361.61 25 411.61 2

Edges+Sender+Covar+Recip+TransTriple 368.81 25 418.81 3

Edges+Sender+Covar+Recip+CycTriple+TransTriple 358.73 26 41 0.73 1

◮ Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates),
with additional effects for reciprocated, cycle-completing, and transitive-completing edges.
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Advice-Seeking ERG – AIC
Selected Model

Effect θ̂ s.e. Pr(> |Z|) Effect θ̂ s.e. Pr(> |Z|)

Edges −1.022 0.137 0.0000 ∗ ∗ ∗ Sender14 −1.513 0.231 0.0000 ∗ ∗ ∗

Sender2 −2.039 0.637 0.0014 ∗∗ Sender15 16.605 0.336 0.0000 ∗ ∗ ∗

Sender3 0.690 0.466 0.1382 Sender16 −1.472 0.232 0.0000 ∗ ∗ ∗

Sender4 −0.049 0.441 0.9112 Sender17 −2.548 0.197 0.0000 ∗ ∗ ∗

Sender5 0.355 0.495 0.4734 Sender18 1.383 0.214 0.0000 ∗ ∗ ∗

Sender6 −4.654 1.540 0.0025 ∗∗ Sender19 −0.601 0.190 0.0016 ∗∗

Sender7 −0.108 0.375 0.7726 Sender20 0.136 0.161 0.3986

Sender8 −0.449 0.479 0.3486 Sender21 0.105 0.210 0.6157

Sender9 0.393 0.496 0.4281 Reciprocity 0.885 0.081 0.0000 ∗ ∗ ∗

Sender10 0.023 0.555 0.9662 Edgecov (Reporting) 5.178 0.947 0.0000 ∗ ∗ ∗

Sender11 −2.864 0.721 0.0001 ∗ ∗ ∗ Edgecov (Friendship) 1.642 0.132 0.0000 ∗ ∗ ∗

Sender12 −2.736 0.331 0.0000 ∗ ∗ ∗ CycTriple −0.216 0.013 0.0000 ∗ ∗ ∗

Sender13 −0.986 0.194 0.0000 ∗ ∗ ∗ TransTriple 0.090 0.003 0.0000 ∗ ∗ ∗

Null Dev 582.24; Res Dev 358.73 on 394 df

◮ Some observations...

⊲ Arbitrary edges are costly for most actors
⊲ Edges to friends and superiors are “cheaper” (or even positive payoff)
⊲ Reciprocating edges, edges with transitive completion are cheaper...

⊲ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?
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Summary

◮ Linking low-level processes and aggregate outcomes is a non-trivial problem

⊲ Not every process leads to intelligible results

⊲ Not all of the above are behaviorally plausible

◮ Potential games for cross-sectional (ERG) network models

⊲ Allow us to derive random cross-sectional behavior from strategic interaction

⊲ Provide sufficient conditions for ERG parameters to be interpreted in terms of
preferences

⊲ Allows for testing of competing behavioral models (assuming scope conditions

are met!)

◮ Approach seems promising, but many questions remain

⊲ Can we characterize utilities which lead to identifiable models?

⊲ How can we leverage other properties of potential games?
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Model Adequacy Check
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Exponential Families for
Random Graphs

◮ For random graph G w/countable support G, pmf is given in ERG form by

Pr(G = g|θ) =
exp

(

θT
t(g)

)

∑

g′∈G
exp (θT t(g′))

IG(g) (4)

◮ θT
t: linear predictor

⊲ t : G → R
m: vector of sufficient statistics

⊲ θ ∈ R
m: vector of parameters

⊲
∑

g′∈G
exp

(

θT
t(g′)

)

: normalizing factor (aka partition function, Z)

◮ Intuition: ERG places more/less weight on structures with certain features,
as determined by t and θ

⊲ Model is complete for pmfs on G, few constraints on t
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Building Potentials:
Independent Edge Effects

◮ General procedure

⊲ Identify utility for actor i

⊲ Determine difference in ui for single
edge change

⊲ Find ρ such that utility difference is equal

to utility difference for all ui

◮ Linear combinations of payoffs

⊲ If ui (y) =
P

j u
(j)
i (y),

ρ (y) =
P

j ρ
(j)
i (y)

◮ Edge payoffs (homogeneous)

⊲ ui (y) = θ
P

j yij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θ

⊲ ρ (y) = θ
P

i

P

j yij

⊲ Equivalence: p1/Bernoulli density effect

◮ Edge payoffs (inhomogeneous)

⊲ ui (y) = θi

P

j yij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θi

⊲ ρ (y) =
P

i θi

P

j yij

⊲ Equivalence: p1 expansiveness effect

◮ Edge covariate payoffs

⊲ ui (y) = θ
P

j yijxij

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θxij

⊲ ρ (y) = θ
P

i

P

j yijxij

⊲ Equivalence: Edgewise covariate effects

(netlogit)
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Building Potentials:
Dependent Edge Effects

◮ Reciprocity payoffs

⊲ ui (y) = θ
P

j yijyji

⊲ ui

“

y
+
ij

”

− ui

“

y
−
ij

”

= θyji

⊲ ρ (y) = θ
P

i

P

j<i yijyji

⊲ Equivalence: p1 reciprocity effect

◮ 3-Cycle payoffs

⊲ ui (y) = θ
P

j 6=i

P

k 6=i,j yijyjkyki

⊲ ui

“

y
+
ij

”
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“

y
−
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”
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P

k 6=i,j yjkyki

⊲ ρ (y) = θ
3

P

i

P

j 6=i

P
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⊲ Equivalence: Cyclic triple effect

◮ Transitive completion payoffs

⊲ ui (y) =

θ
P

j 6=i

P

k 6=i,j

2

4

yijykiykj + yijyikyjk

+yijyikykj

3

5
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“
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+
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”
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“

y
−
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”

=

θ
P

k 6=i,j

ˆ

ykiykj + yikyjk + yikykj

˜

⊲ ρ (y) = θ
P

i

P

j 6=i

P

k 6=i,j yijyikykj

⊲ Equivalence: Transitive triple effect
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Additional Insights from
Potential Game Theory

◮ Game-theoretic properties of the behavioral model

⊲ Local maxima of ρ over Yn correspond to Nash equilibria in pure strategies; global maxima
of ρ correspond to stochastically stable Nash equilibria in pure strategies

⋄ At least one maximum must exist, since ρ is bounded above for any given θ

⊲ Fictitious play property; Nash equilibria compatible with best responses to mean strategy

profile for population (interpreted as a mixed strategy)

◮ Implications for simulation, model behavior

⊲ Multiplying θ by a constant α → ∞ will drive the system to its SSNE

⋄ Likewise, best response dynamics (equivalent to conditional stepwise ascent) always
leads to a NE

⊲ For degenerate models, “frozen” structures represent Nash equilibria in the associated
potential game

⋄ Suggests a social interpretation of degeneracy in at least some cases: either correctly
identifies robust social regimes, or points to incorrect preference structure
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Proof Sketch for Potential Game
Theorem (Unilateral Dyadic Case)

Assume an updating opportunity arises for yij , and assume that player k has control of yij . By the
logistic choice assumption,

Pr
“

Y = y
+
ij

˛

˛Yc
ij = yc

ij

”

=
exp

“

uk

“

y
+
ij

””

exp
“
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“

y
+
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””

+ exp
“
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“

y
−
ij

”” (5)

=
h

1 + exp
“
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“

y
−
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”

− uk

“

y
+
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””i−1
. (6)

Since u,Y form a potential game, ∃ ρ : ρ
“

y
+
ij

”

− ρ
“

y
−
ij

”

= uk

“

y
+
ij

”

− uk

“

y
−
ij

”

∀ k, (i, j),yc
ij .

Therefore, Pr
“

Y = y
+
ij

˛

˛

˛

Yc
ij = yc

ij

”

=
h

1 + exp
“

ρ
“

y
−
ij

”

− ρ
“

y
+
ij

””i−1
. Now assume that the

updating opportunities for Y occur sequentially such that (i, j) is selected independently of Y, with
positive probability for all (i, j). Given arbitrary starting point Y(0), denote the updated sequence of
matrices by Y(0),Y(1), . . .. This sequence clearly forms an irreducible and aperiodic Markov chain
on Y (so long as ρ is finite); it is known that this chain is a random scan Gibbs sampler on Y with

equilibrium distribution Pr(Y = y) =
exp(ρ(y))

P

y′∈Y exp(ρ(y′))
, which is an ERG with potential ρ. By the

ergodic theorem, then Y(i) −−−−→
i→∞

ERG(ρ(Y)). QED.
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