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Motivation

Social networks are used to represent a variety of relational data.

Interconnections in social organizations, groups, and families
Spread of infectious diseases
Telephone calling patterns
Dissemination of information

Social networks exhibit structural features:

Transitivity
Homophily on attributes
Clustering

The likelihood of a tie is often correlated with the similarity of
attributes of the actors. (E.g., geography, age, ethnicity, income).

These attributes may be observed or unobserved.

A subset of nodes with many ties between them may indicate
clustering with respect to an underlying social space.



Introduction LSE Cost computation Nets and net trees Incremental motion Maintaining nets under motion End Matter

Latent Space Embedding (LSE)

Hypothesis

The likelihood of a relational ties depends on
the similarity of attributes in an unobserved
latent space.

Problem Statement

Given a network Y = [yi,j ] with n nodes).
Estimate a set of positions Z = {z1, . . . , zn} in
R

d that best describes this network relative to
some model.
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Latent Space Embedding (LSE)

Usefulness of LSE

Provides a parsimonious model of network structure (O(dn) rather
than O(n2))

Allows for natural interpretation of geometric relations, such as
“betweenness,” “surroundedness,” and “flatness”

Provides a means to perform visual analysis of network structure
through spatial relationships (when dimension is low), and outlier
detection.

Can be adapted to cluster the data [HRT07].

The model is flexible and extensible.
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LSE — Stochastic Model [HRH02]

Input

Y , an n × n sociomatrix (yi,j = 1 if there is a tie between i and j)

Additional covariate information X (ignored here)

Model Parameters

Z : The positions of n individuals, {z1, . . . , zn}

α: Real-valued scaling parameter

Stochastic Model

Ties are independent of each other, but depend on Z and α.

Pr[Y | Z , α] =
∏

i 6=j

Pr[yi,j | zi , zj , α]
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LSE — MCMC Algorithm

Objective

Given an n × n matrix Y , determine Z and α to maximize Pr[Y | Z , α].

MCMC — Metropolis Hastings Algorithm

An iterative algorithm for drawing a sequence of samples
Z0,Z1,Z2, . . . from a distribution [MRR+53]

Simplified View: For k = 0, 1, 2, . . .

Sample a proposal Z from some distribution J(Z | Zk)
Evaluate the decision variable

ρ =
Pr[Y | Z , αk ]

Pr[Y | Zk , αk ]
(← Bottleneck)

Accept Z as Zk+1 with probability min(1, ρ)

Convergence may require many iterations. Efficiency is critical.
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LSE — Efficient cost computation

The LSE cost computation involves computing proximity relations
among pairs of points, conditioned on the existence of an tie.

This computation can be greatly accelerated by storing points in a
spatial index, from which distance relations can be extracted.

Well-separated pair decomposition (WSPD): Maintain O(n)
clustered pairs that cover all O(n2) pairs.
Approximate range searching: Count the number of points lying
within a spherical region of space.

Dynamics is essential: After each iteration, points positions are
perturbed. Index needs to be updated.
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Computing Costs (Incrementally)

The spatial data structures for LSE cost computations must be highly
dynamic.

Incremental Hypothesis

If point perturbations are small, then relatively few changes to spatial
index.

Incremental Approach

(After each perturbation):

Update spatial index (← this talk )

Update spatial index

Update decision variable
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Nets

Net

P is a finite set of points in a R
d . Given

r > 0, an r -net for P is a subset X ⊆ P

such that,

max
p∈M

dist(p,X ) < r and

min
x,x′∈X

x 6=x′

dist(x , x ′) ≥ r .

Features

Intrinsic: Independent of coord. frame

Stable: Relatively insensitive to small
point motions
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Net Tree

Net Tree

The leaves of the tree consists of the points of P.

The tree is based on a series of nets, P(1),P(2), . . . ,P(h), where P(i)

is a (2i )-net for P(i−1).

Each node on level i − 1 is associated with a parent, at level i , which
lies lies within distance 2i .
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Incremental Motion — Observer-Builder Model

Incremental (Black-Box) Motion

Motion occurs in discrete time steps

All points may move

No constraints on motion, but processing is most efficient when
motion is small or predictable

Observer-Builder Model

Two agents cooperate to maintain data structure [MNP+04,YiZ09]

Observer: Observes points motions
Builder: Maintains the data structure

Certificates: Boolean conditions, which prove structure’s correctness
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Incremental Model — Observer-Builder Model

Communication Protocol

Builder maintains structure and issues certificates

Observer notifies builder of any certificate violations

Builder then fixes the structure and updates certificates
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Observer-Builder — Cost Model

Cost Model

Computational cost is the total communication complexity (e.g.,
number of bits) between the observer and builder.

Builder’s goal: Issue certificates that will be stable against future
motion.

Builder’s and observer’s overheads are not counted:

Builder’s overhead: Is small.
Observer’s overhead: Observer can exploit knowledge about point
motions to avoid re-evaluating certificates.
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Incremental Online Algorithm for Maintaining an r -Net

What the Builder Maintains

The point set, P

The r -net, X

For each p ∈ P:

A representative rep(p) ∈ X , where dist(p, x) ≤ r

A candidate list cand(p) ⊆ X of possible representatives for p

Certificates

For p ∈ P, Assignment Certificate(p): dist(p, rep(p)) ≤ r

(representative is close enough)

For x ∈ X , Packing Certificate(x): |b(x , r) ∩ X | ≤ 1 (no other
net-point is too close)
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Incremental Online Algorithm for Maintaining an r -Net

Assignment Certificate Violation(p)

Point p has moved beyond distance r from its representative:

If cand(p) has a representative x within distance r , x is now p’s new
representative.

Otherwise, make p a net point (add it to X ) and add p to candidate
lists of points within distance r of p

Packing Certificate Violation(x)

There exists another net point within distance r of x :

Remove all net points within radius r of x . (This may induce many
assignment violations)

Handle all assign certificate violations
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Competitive Ratio

Competitive Ratio

We establish the efficiency through a competitive analysis

Given an incremental algorithm A and motion sequence P, define

CA(P) = Total communication cost of running A on P

COPT (P) = Total communication cost of optimal algorithm on P

The optimal algorithm may have full knowledge of future motion

Competitive Ratio:

max
P

CA(P)

COPT (P)
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Slack Net

Slack Net

To obtain a competitve ratio, we relaxed the r -net definition slightly.

Given constants α, β ≥ 1, an (α, β)-slack r -net is a subset X ⊆ P of
points such that

max
p∈M

dist(p,X ) < α r and ∀x ∈ X , |{X ∩ b(x , r)}| ≤ β.

Covering radius larger by factor α. Allow up to β net points to
violate packing certificate.
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Our Results

Theorem: (Slack-Net Maintenance)

There exists an incremental online algorithm, which for any real r > 0,
maintains a (2, β)-slack r -net for any point set P under incremental
motion. Under the assumption that P is a (2, β)-slack (r/2)-net, the
algorithm achieves a competitive ratio of O(1).

Theorem: (Slack-Net Tree Maintenance)

There exists an online algorithm, which maintains a (4, β)-slack net tree
for any point set P under incremental motion. The algorithm achieves a
competitive ratio of at most O(h), where h is the height of the tree.
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Concluding Remarks

Summary

LSE is a flexible and powerful method for producing a geometric
point model for a given social network

It estimates point positions in an unobserved social space based on a
stochastic model relating network ties to distances

Introduced a computational model for incremental motion.

Showed how to improve efficiency of LSE computations based on
MCMC approaches through the use of an online incremental
algorithm (dynamically).

Future Work

Tighten competitive ratio bounds

Establish lower bounds (is slackness essential?)

Implementation and tuning

Analysis of real network data sets
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Other Work Supported by this Grant

Storing and Retrieving Information from Dynamic Data Sets:
Maintaining Nets and Net Trees under Incremental Motion

(with M. Cho and E. Park), ISAAC’09.
A Dynamic Data Structure for Approximate Range Searching

(with E. Park), submitted.

Compression and Retrieval of Kinetic Data from Sensor Networks:
Compressing Kinetic Data From Sensor Networks

(with S. Friedler), AlgoSensors’09.
Approximation Algorithm for the Kinetic Robust K-Center Problem

(with S. Friedler), CGTA (accepted).
Spatio-Temporal Range Searching Over Compressed Sensor Data

(with S. Friedler), submitted.

Efficient Algorithms and Data Structures for Geometric Retrieval:
Space-Time Tradeoffs for Approximate Nearest Neighbor Searching

(with S. Arya and T. Malamatos), JACM’09.
Tight Lower Bounds for Halfspace Range Searching

(with S. Arya and J. Xia), submitted.
A Unifying Framework for Approximate Proximity Searching

(with S. Arya and G. Fonseca), submitted.
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Thank you!
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