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What is a network model?

For a network observed at a single instant: any probability
distribution on the set of all possible networks (say, binary
networks on a fixed set of n nodes).

Thus, we assign each possible network a probability, e.g.,

P

Y =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 =

1
64

, P

Y =


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0


 =

1
64

,

and so on.
Fortunately, there are better ways than explicit
enumeration!
This notion can be generalized to more general situations
(time-varying networks, non-binary edges, etc.)
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Exponential family, or p-star, models

Exponential-Family Random Graph Model (ERGM)

Pθ(Y = y) ∝ exp{θ>g(y)}

or

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)
,

where
Y is a random network on n nodes (e.g., a 0–1 matrix)
θ is a vector of parameters
g(y) is a known vector of network statistics on y
κ(θ) makes all the probabilities sum to 1

Ultimately, we care about what data (y ) tell us about θ.
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The Erdős-Rényi model for random networks

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)

The normalizing “constant” κ(θ) can be troublesome, but
not always.

Example: The Erdős-Rényi model

Let p be some fixed constant between 0 and 1. Let P(Y = y)

be equal to pE(y)(1− p)E(y), where E(y) is the number of
edges in y and E(y) is the number of non-edges in y .

Rewriting, we get

P(Y = y) =

(
p

1− p

)# of edges
× (1− p)N

= eθ(# of edges) × 1
κ(θ)
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The Erdős-Rényi model for random networks

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)

The normalizing “constant” κ(θ) can be troublesome, but
not always.

Example: The Erdős-Rényi model
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ERGMs as a starting point

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)

We will use the basic ERGM framework as a jumping-off
point for discussing much of our work on estimation,
including topics such as:

Various methods for intractable normalizing constants κ(θ)
Latent space models
Mixtures models of simple ERGMs
Relational event models
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The goal of estimation

Exponential-family Random Graph Model (ERGM)

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)

When θ is known, this is a probability model describing the
random behavior of Y .

Statistical estimation is “probability in reverse”: We don’t
know θ but instead we observe Y = yobs.

Goal:
Use observed data to select from the given ERGM class — i.e.,
to learn about θ.

We might search for a “best” θ (MLE) or a density p(θ |data).
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The loglikelihood function

The model class:

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)
, where κ(θ) =

∑
all possible

graphs z

exp{θ>g(z)}

The likelihood is just L(θ) = Pθ(Y = yobs), viewed as a
function of θ.

To choose a θ, we might try to search for a “best” theta by
maximizing L(θ) or

`(θ) = log L(θ) = θ>g(yobs)− log κ(θ)

Alternatively, a Bayesian approach tries to describe an
entire distribution over θ values, the posterior:

p(θ |Y = yobs) ∝ L(θ)× π(θ).
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Computing the likelihood is sometimes very difficult
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For this undirected, 34-node
network, computing `(θ) directly
requires summation of

7,547,924,849,643,082,704,483,
109,161,976,537,781,833,842,
440,832,880,856,752,412,600,
491,248,324,784,297,704,172,
253,450,355,317,535,082,936,
750,061,527,689,799,541,169,
259,849,585,265,122,868,502,
865,392,087,298,790,653,952

terms.
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Conditional log-odds of an edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0
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Conditional log-odds of an edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

Conditional on Y c
ij = yc

ij , Y has only two possible states,
depending on whether Yij = 0 or Yij = 1.
Let’s calculate the ratio of the two respective probabilities.

[We’ll use Pθ(Y = y) = exp{θ>g(y)}/κ(θ).]
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Conditional log-odds of an edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

P(Yij = 1|Y c
ij = yc

ij )

P(Yij = 0|Y c
ij = yc

ij )
=

exp{θ>g(y+
ij )}

exp{θ>g(y−ij )}

A lot of cancellation happened on the right hand side!
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Conditional log-odds of an edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

log
P(Yij = 1|Y c

ij = yc
ij )

P(Yij = 0|Y c
ij = yc

ij )
= θ>[g(y+

ij )− g(y−ij )]
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Conditional log-odds of an edge

Notation: For a network y and a pair (i , j) of nodes,

δ(y)ij denotes the vector of change statistics,

δ(y)ij = g(y+
ij )− g(y−ij ).

So δ(y)ij is the conditional log-odds of edge (i , j).

log
P(Yij = 1|Y c

ij = yc
ij )

P(Yij = 0|Y c
ij = yc

ij )
= θ>δ(y)ij

This simple formula can serve as the basis for a Markov chain
Monte Carlo (MCMC) scheme for simulating random networks.
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Maximum Pseudolikelihood: Intuition

What if we assume that there is no dependence (or very
weak dependence) among the Yij?

In other words, what if we approximate the marginal
P(Yij = 1) by the conditional P(Yij = 1|Y c

ij = yc
ij )?

Then the Yij are independent with

log
P(Yij = 1)

P(Yij = 0)
= θ>δ(yobs)ij ,

so we obtain an estimate of θ using straightforward logistic
regression.
Result: The maximum pseudolikelihood estimate.
For independence models, MPLE = MLE!
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MLE vs. MPLE

Far better an approximate answer to the ‘right’
question, which is often vague, than an ‘exact’ answer
to the wrong question, which can always be made
precise.

— John W. Tukey

MLE (maximum likelihood estimation): Well-established
method but very hard because the normalizing constant
κ(α) is difficult to evaluate, so we approximate it instead.
MPLE (maximum pseudo-likelihood estimation): Easy to
do using logistic regression, but based on an
independence assumption that is often not justified.

Several authors, notably van Duijn et al. (2009), argue forcefully
against the use of MPLE (except when MLE=MPLE!).
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Example Network: High School Friendship Data

School 10:  205 Students
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9 An edge indicates a mutual
friendship.
Colored labels give grade
level, 7 through 12.
Circles = female,
squares = male,
triangles = unknown.
N.B.: Missing data ignored
here, though this could be
altered.
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Fitting an ERGM to the high school dataset

ERGM parameter estimates from Hunter et al (2008):
Coefficient Coefficient
edges −3.49(1.92) AD (Gr.) = 1 3.41(1.42)∗

GWESP 0.83(0.13)∗∗∗ AD (Gr.) = 2 2.42(1.48)
GWD −2.01(0.35)∗∗∗ AD (Gr.) = 3 1.43(1.62)
GWDSP 0.50(0.09)∗∗∗

DH (Gr. 7) 6.00(1.56)∗∗∗

NF (Gr. 8) −0.34(0.78) DH (Gr. 8) 6.48(1.64)∗∗∗

NF (Gr. 9) 0.64(0.59) DH (Gr. 9) 4.52(1.58)∗∗

NF (Gr. 10) 0.55(0.59) DH (Gr. 10) 4.96(1.59)∗∗

NF (Gr. 11) 0.97(0.60) DH (Gr. 11) 4.32(1.54)∗∗

NF (Gr. 12) 1.23(0.60)∗ DH (Gr. 12) 4.11(1.58)∗∗

NF (Gr. NA) 3.86(1.30)∗∗

DH (White) 1.55(0.68)∗

NF (Black) 0.51(0.42) DH (Black) 0.92(1.55)
NF (Hisp) −0.23(0.33) DH (Hisp) 0.87(0.43)∗

NF (Nat Am) −0.21(0.32) DH (Nat Am) 1.31(0.43)∗∗

NF (Other) −0.61(0.69)
NF (Race NA) 1.53(0.89)

NF (Female) 0.09(0.10) UH (Sex) 0.67(0.16)∗∗∗

NF (Sex NA) −0.18(0.47)
NF stands for Node Factor. AD stands for Absolute Difference.

DH stands for Differential Homophily.
UH stands for Uniform Homophily.

∗ Significant at 0.05 level ∗∗ Significant at 0.01 level ∗∗∗ Significant at 0.001 level

School 10:  205 Students
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Goodness of fit intuition

ERGM

(approx) Fitted

class

MLE ERGM

exp{θ>g(y)}

−→ θ̂ −→ exp{θ̂>g(y)}
↑ ↓

yobs Randomly generated
networks Ỹ1, Ỹ2, . . .

Question: How does yobs “look” as a representative of the
sample Ỹ1, Ỹ2, . . .?
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Goodness of fit intuition

ERGM (approx)
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Graphical GOF check (from Hunter et al, 2008)

n=205 (dataset shown)
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n=2209 (different dataset but same model)
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Intractable normalizing constants

Exponential-family Random Graph Model (ERGM)

Pθ(Y = y) =
exp{θ>g(y)}

κ(θ)

In ERGMs for which κ(θ) is intractable, we are working on
improved MCMC-based maximum likelihood schemes
In addition, by considering MPLE and MLE to be at either
end of a spectrum of algorithms, it may be possible to
balance the computational benefits of MPLE with the
accuracy and precision of MLE.
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Latent space models

Latent space network model (Handock et al, 2007)

Pθ(Y = y | z) ∝
∏
i 6=j

[
θ>0 xij + θ1‖zi − zj‖

]
,

where zi and zj are (unobserved) positions in latent space of
the i th and j th nodes.

Conditional on the z ’s, the normalizing constant is simple;
but there are many z parameters!
Additional structure may be assumed on the zi as in
Handcock et al (2007).
Implementation of an estimation algorithm (θ and the zi )
may be dramatically aided through improved algorithms
and data structures.
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Mixtures of ERGMs

Stochastic blockstructure model (Nowicki and Snijders, 2001)

Pθ(Y = y | z, λ) =
∏
i 6=j

[
θzi ,zj

]yij ,

where zi and zj are (unobserved) latent categories and the zi
are independent with P(zi = k) = λk .

Like the latent position model, the normalizing constant is
simple conditional on the z ’s.
However, the full (joint) likelihood is too complicated for
direct methods.
MCMC methods (e.g., Nowicki and Snijders, 2001) are
possible but do not scale well to large networks.
An alternative (Daudin et al, 2008) is a variational method.
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Relational Event Models

In the relational events model, “events” happen at particular
moments in time according to:

a particular hazard function λ(t), which may involve various
parameters and
statistics defined on a network determined by the
cumulative sequence of events.

Depending on the choice of parameterization, estimation may
or may not be challenging numerically; but typically one may
avoid the difficult normalizing constant issue.
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