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Event, Text, Network Data

e Network: N actors

e Events:
— Event i occurs at timestamp t with sender s and receiver r
— Events are instantaneous
— Note: interested in event-level data, not aggregates

e Text

— e.g., document for each event i, e.g., email
— e.g., text data for each actor

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 2
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Motivation

e Real-world social networks often involve events and text
— Email communications
— Facebook postings
— Blogs
— Etc

e Want to build statistical models that
— Provide insight into underlying processes
— Allow us to make predictions

e Focus on “semi-parametric” models
— Hidden/latent variables

— Provides dimensionality reduction (and insight)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 6
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Outline

Statistical topic models
— “building block” for text modeling

Relational topic models
— Extending topic models to documents with links

Scalable parallel algorithms for large data sets

Event data
— Learning “modes” of behavior for relational events

Putting it together....
— Current and future directions

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 7
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Statistical Topic Modeling

List of “topics”
“bag-of-words” Topic Model /

Algorithm

Topical characterization

# topics of each document

e QOriginal work by Blei, Ng, Jordan (2003)

e Multiple applications:
— Improved web searching
— Automatic indexing of digital historical archives
— Specialized search browsers (e.g. medical applications)
— Legal applications (e.g. email forensics)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 8
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Statistical Topic Modeling

e Document = vector of word counts w

e Topic = multinomial distribution over w
= P(Wg, Wy, weoveeee Wy | D)

e Assume T latent topics —= act as “basis functions”

e Words are generated by
— Selecting a topic given a document from p(t | doc)
— Selecting a word given a topic from P(w | t)

e Estimation:
— Find P(w | t) by maximizing likelihood of observed words
— Use collapsed Gibbs sampling: linear per iteration

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 9
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~ P(t]d
D word counts ~ D (t ] doc)

p(w;|d) = Z p(w;i|z;)p(z;|d)
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of Word-Topic Distributions

Examples
word  prob. word prob.
oxygen 0.136 president 0.129
carbon 0.097 roosevelt 0.032
dioxide 0.050 congress 0.030
air 0.046 johnson 0.026
ramona 0.037 office 0.021
gas 0.036 wilson 0.021
nitrogen 0.030 nixon 0.020
gases 0.026 reagan 0.018
atmosphere  0.020 kennedy  0.018
hydrogen 0.020 carter 0.017
water 0.016 presidents 0.012
respiraion 0.014 administration 0.012
process 0.014 presidential 0.011
beezus 0.012 white 0.011
breathe 0.011 budget 0.010

word  prob.
france 0.071
french 0.069
europe 0.051
germany 0.043
german  0.041
countries  0.030
britain  0.024
italy 0.019
western 0.019
european 0.019
british  0.016
war 0.015
germans 0.013
country 0.012
nations 0.012

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 11
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From: PGE News
To: ALL PGE EMPLOYEES
Date: 8/14/01 2:54PM
Subject: Jeff Skilling resigns as CEOQ of Enron
PGE News .. ....ccooivivnne.... AUGUSt 14, 2001

Jeff Skilllng rasigns as CEQ of Enron

Enron today announced that President and CEO Jeff Skilling has resigned, effective immediately, and
that the Enran Board of Directors has asked Ken Lay to resume his role as Chairman and CEO.

“Stan Horton called this aftemoon to inform me of Jeff's decision to step down for personal reasans,”
says PGE CEQ and President Peggy Fowler. Horton, CEO of Enron Transpartation, is Fowler's
executive connection to the Enron team, "He wanted fo let me know that Mr, Skilling's departura will not
inany way impact Enron's ongaing strategy for success and wa should expest no nearterm dramatic
arganizational changes.”

“Clearly, Enron will continue to focus on increasing the company's stock value," Fowler added. "PGE can
help in this effort by remaining committed to our Scorecard goals and operational excallence.”

Below is the letter Ken Lay is sending to Enron employees this afternoon announcing the decision:

To: Enron Employess Worldwide
From: Ken Lay

It is with regret that | have fo announce that Jeff Skilling is laaving Enron. Today, the Board of Directors
accepted his resignation as President and CEO of Enron. Jeff ia resigning for personal reasons and his
decision is voluntary. | regret his decision, but | accept and understand it. | have worked closely with Jeff
for more than 15 years, including 11 here at Enron, and have had few, if any, professional relationships
that | value more. | am pleased to say that he has agreed to enter into a consulling arrangement with the
campany to advise me and the Board of Directors.

Now it's time o look forward.

With Jeff leaving, the Board has asked me to resume the responsibiiities of President and CEO in
addition to my role as Chairman of the Beard. | have agreed. | want {o assure you that | have never felt
better about the prospacts for the company. All of you know that our stock price has suffered
substantially over the last few months. One of my top priorities will be to restare a significant amount of
the stock value we have lost as soon as possible. Our performance has never been stronger; our
business model has never been more robust; aur growth has never been more certain: and most
importantly, we have never had a better nor deeper pool of talent throughout the company. We fHave the
finest organization in American business teday. Together, we will make Enron the world's leading

company.
cc: Kathy & George Wyatt; Kathy Wyatt

Enron email data set:
250,000 emails
1999-2002

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 12
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Enron email topics

TOPIC 36 TOPIC 72 TOPIC 54 TOPIC 23
WORD PROB. WORD PROB. WORD PROB. WORD PROB.
FEEDBACK 0.0781 PROJECT 0.0514 FERC 0.0554 ENVIRONMENTAL 0.0291
PERFORMANCE 0.0462 PLANT 0.028 MARKET 0.0328 AIR 0.0232
PROCESS 0.0455 COST 0.0182 ISO 0.0226 MTBE 0.019
PEP 0.0446 CONSTRUCTION 0.0169 COMMISSION 0.0215 EMISSIONS 0.017
MANAGEMENT 0.03 UNIT 0.0166 ORDER 0.0212 CLEAN 0.0143
COMPLETE 0.0205 FACILITY 0.0165 FILING 0.0149 EPA 0.0133
QUESTIONS 0.0203 SITE 0.0136 COMMENTS 0.0116 PENDING 0.0129
SELECTED 0.0187 PROJECTS 0.0117 PRICE 0.0116 SAFETY 0.0104
COMPLETED 0.0146 CONTRACT 0.011 CALIFORNIA 0.0110 WATER 0.0092
SYSTEM 0.0146 UNITS 0.0106 FILED 0.0110 GASOLINE 0.0086
SENDER PROB. SENDER PROB. SENDER PROB. SENDER PROB.
perfmgmt 0.2195 rkk 0.0288 *kk 0.0532 rxk 0.1339
perf eval process 0.0784 ok 0.022 K 0.0454 ok 0.0275
enron announcements 0.0489 rork 0.0123 ok 0.0384 Fohk 0.0205
*kk 0.0089 *kk 0.0111 *kk 0.0334 rokk 0.0166
*rk 0.0048 il 0.0108 il 0.0317 *kx 0.0129

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 13
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Non-work Topics...

TOPIC 66 TOPIC 182 TOPIC 113 TOPIC 109
WORD PROB. WORD PROB. WORD PROB. WORD PROB.
HOLIDAY 0.0857 TEXANS 0.0145 GOD 0.0357 AMAZON 0.0312
PARTY 0.0368 WIN 0.0143 LIFE 0.0272 GIFT 0.0226
YEAR 0.0316 FOOTBALL 0.0137 MAN 0.0116 CLICK 0.0193
SEASON 0.0305 FANTASY 0.0129 PEOPLE 0.0103 SAVE 0.0147
COMPANY 0.0255 SPORTSLINE 0.0129 CHRIST 0.0092 SHOPPING 0.0140
CELEBRATION 0.0199 PLAY 0.0123 FAITH 0.0083 OFFER 0.0124
ENRON 0.0198 TEAM 0.0114 LORD 0.0079 HOLIDAY 0.0122
TIME 0.0194 GAME 0.0112 JESUS 0.0075 RECEIVE 0.0102
RECOGNIZE 0.019 SPORTS 0.011 SPIRITUAL 0.0066 SHIPPING 0.0100
MONTH 0.018 GAMES 0.0109 VISIT 0.0065 FLOWERS 0.0099
SENDER PROB. SENDER PROB. SENDER PROB. SENDER PROB.
chairman & ceo 0.131 cbs sportsline com 0.0866 crosswalk com  0.2358 amazon com 0.1344
*kk 0.0102 houston texans 0.0267 wordsmith 0.0208 jos a bank 0.0266
*kk 0.0046 houstontexans 0.0203 ok 0.0107 sharperimageoffers  0.0136
ik 0.0022 sportsline rewards 0.0175 doctor dictionary 0.0101 travelocity com 0.0094
general announcement 0.0017 pro football 0.0136 k 0.0061 barnes & noble com 0.0089

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 14
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Topical Topics

TOPIC 18 TOPIC 22 TOPIC 114 TOPIC 194
WORD PROB. WORD PROB. WORD PROB. WORD PROB.
POWER 0.0915 STATE 0.0253 COMMITTEE 0.0197 LAW 0.0380
CALIFORNIA 0.0756 PLAN 0.0245 BILL 0.0189 TESTIMONY 0.0201
ELECTRICITY 0.0331 CALIFORNIA 0.0137 HOUSE 0.0169 ATTORNEY 0.0164
UTILITIES 0.0253 POLITICIAN Y 0.0137 WASHINGTON 0.0140 SETTLEMENT  0.0131
PRICES 0.0249 RATE 0.0131 SENATE 0.0135 LEGAL 0.0100
MARKET 0.0244 BANKRUPTCY 0.0126 POLITICIAN X 0.0114 EXHIBIT 0.0098
PRICE 0.0207 SOCAL 0.0119 CONGRESS 0.0112 CLE 0.0093
UTILITY 0.0140 POWER 0.0114 PRESIDENT 0.0105 SOCALGAS 0.0093
CUSTOMERS 0.0134 BONDS 0.0109 LEGISLATION 0.0099 METALS 0.0091
ELECTRIC  0.0120 MOU 0.0107 DC 0.0093 PERSON Z 0.0083
SENDER PROB. SENDER PROB. SENDER PROB. SENDER PROB.
b 0.1160 ok 0.0395 bl 0.0696 b 0.0696
ok 0.0518 bl 0.0337 K 0.0453 ok 0.0453
ok 0.0284 rx 0.0295 FrE 0.0255 rx 0.0255
ok 0.0272 ok 0.0251 bl 0.0173 ok 0.0173
o 0.0266 rx 0.0202 FrE 0.0317 rx 0.0317
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o Tlhe New Jork Cimes ¢

Topic trends from New York Times
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Relational Topic Models

[Chang, Blei, 2009]
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Yd,ar ~ %b(’yd,d' !Zd, Zg, 1), 7/)
“Link probability function”

Where, for example

Y(yaa = 1) = exp(n

T(id o de) + I/)

(similar to latent-space model)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 18
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Collapsed Gibbs sampling for RTM

Conditional distribution of each z:

- - Nt + )
2=k ;fwf7 ) o (N 1+ o ( kw < LDA term
P(Zid | ) o< (N )(N;;zd—FWﬁ)
H 77b6’ (yd,d’ — sz? Zgr, 1], V) +— “Edge” term
d'#d:yy =1
H Ye(Yaa = 0|2, 24,1, V) «— “Non-edge” term
df#d:yd’df:{)

Using the exponential link probability function, it is computationally
efficient to calculate the “edge” term.

It is very costly to compute the “non-edge” term exactly
-> can explore various efficient ways to approximate this term

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 19
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Results on Movie Data

Wikipedia pages of 10,000 movies
Movies are linked if they have a common director or common actor

Model trained on subgraph and tested on different subgraph

ALGORITHM MEAN LINK RANK
OF PREDICTIONS

Random Guessing 5000

LDA + Regression 2321

Ignoring Non-Edges 1955

Fast Approximation 2089

Subsampling 5%6 + Caching 1739

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 20
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Examples of Movie Data Topics

POLICE: [t2] police agent kill gun action escape car film

DISNEY: [t4] disney film animated movie christmas cat animation story
AMERICAN: [t5] president war american political united states government against
CHINESE: [t6] film kong hong chinese chan wong china link

WESTERN: [t7] western town texas sheriff eastwood west clint genre

SCI-FI: [t8] earth science space fiction alien bond planet ship
AWARDS: [t9] award film academy nominated won actor actress picture
WAR: [t20] war soldier army officer captain air military general
FRENCH: [t21] french film jean france paris fran les link

HINDI: [t24] film hindi award link india khan indian music

MUSIC: [t28] album song band music rock live soundtrack record

JAPANESE: [t30] anime japanese manga series english japan retrieved character
BRITISH: [t31] british play london john shakespeare film production sir
FAMILY: [t32] love girl mother family father friend school sister

SERIES: [t35] series television show episode season character episodes original
SPIELBERG:[t36] spielberg steven park joe future marty gremlin jurassic
MEDIEVAL [t37] king island robin treasure princess lost adventure castle
GERMAN: [t38] film german russian von germany language anna soviet
GIBSON: [t41] max ben danny gibson johnny mad ice mel

MUSICAL: [t42] musical phantom opera song music broadway stage judy
BATTLE: [t43] power human world attack character battle earth game
MURDER: [t46] death murder kill police killed wife later killer

SPORTS: [t47] team game player rocky baseball play charlie ruth

KING: [t48] king henry arthur queen knight anne prince elizabeth
HORROR: [t49] horror film dracula scooby doo vampire blood ghost

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 21
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Predictions on Movie Data

e 'Sholay’
— Indian film, 45% of words belong to topic 24 (Hindi topic)
— Top 5 most probable movie links in training set:
e ‘'Laawaris’
» 'Hote Hote Pyaar Ho Gaya‘
e 'Trishul’
e 'Mr. Natwarlal’
e 'Rangeela’

e ‘Cowboy’
— Western film, 25% of words belong to topic 7 (western topic)
— Top 5 most probable movie links in training set:
e 'Tall in the Saddle
e 'The Indian Fighter’
e ’'Dakota’
e 'The Train Robbers'
e 'A Lady Takes a Chance’

e ‘Rocky II’
— Boxing film, 40% of words belong to topic 47 (sports topic)
— Top 5 most probable movie links in training set:
e 'Bull Durham’
‘2003 World Series*
‘Bowfinger*
'Rocky V*
'Rocky IV

ROCKY ™

o

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 22
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Scalability

e Two Problems:
— Very large data sets will not fit in main memory
— Topic model learning is not real-time
e Algorithm is linear time, but constant can be large

e Solutions:
— Distributed topic learning (Newman et al, NIPS 2007; JMLR in press)
e Factor of P speedup, with P processors, 70% efficiency
— Fast sampling algorithms (Porteous et al, ACM SIGKDD, 2008)

— More general extensions
— Asuncion, Welling, Smyth, NIPS 2008
— Asuncion, Welling, Smyth, UAI 2009

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 23
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Newman, Asuncion, Smyth, Welling, NIPS 2007, NIPS 2008
Document Document Document
_____ Document | Document | Document
_____ Document | JE— Document | ——-ad Document |
____________ Document Document — Document

Node 1 Node 2 ses Node N

Global synchronization of statistics after each local sampling pass

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 24
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Real-Time Topic Modeling

Timing results or? %5%0,%gg1yth’ Welling, UAI 2009

35 ‘ ‘
3000 blog postings
30.06 seconds 400k words
301 8 topics i
25+ Multicore (x 8) workstation
v 20 - -
c
o
&}
3 15+ |
10+ -
5.88 seconds
5r i
1.99 ds
sl ‘ 1.08 seconds

CGS Parallel CGS Fast-CVB arallel Fast-CVR
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Enron email dataset
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Daily and weekly variation
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Latent Model for Event Data

Poster by Chris DuBois

e Data
— Events = { <sender, receiver, timestamp> }

e Notation
— Sender s, receiver r
— K latent modes, my

e Generative model
my, — P(my | time t)

si — P(s | my)

ri— P | myg)

= The my represent latent “modes” of network behavior
— can be learned from the data
— low-dimensional “space” for large network

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 30
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Similarities to Topic Model

Topics for Text
Topic: P( z, | doc)
Word: P(w | z,)

P(w | doc)
=2 P(w | z) P(z, | doc)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 31
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Similarities to Topic Model

Topics for Text
Topic: P( z, | doc)
Word: P(w | z,)

P(w | doc)
=2 P(w | z) P(z, | doc)

Modes for Events
Mode: P( m, | time)
Event: P(s, r | my)

P(s, r | time)
= 2 P(s, r | m) P(m, | time)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 32
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Similarities to Topic Model

Topics for Text Modes for Events

Word: P(w | z,) Event: P(s, r | my)

P(w | doc) P(s, r | time)

=2 P(w | z) P(z, | doc) = 2 P(s, r | m) P(m, | time)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 33
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Similarities to Topic Model

Topics for Text Modes for Events

Topic: P( z, | doc) Mode: P( m, | time)

P(w | doc) P(s, r | time)

=2 P(w | z) P(z, | doc) = 2 P(s, r | m) P(m, | time)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 34
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Similarities to Topic Model

Topics for Text Modes for Events
Topic: P( z, | doc) Mode: P( m, | time)
Word: P(w | z,) Event: P(s, r | my)

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 35
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Similarities to Topic Model

Topics for Text Modes for Events
Topic: P( z, | doc) Mode: P( m, | time)
Word: P(w | z,) Event: P(s, r | my)

Can use same estimation techniques, e.g., collapsed Gibbs sampling

P. Smyth: Networks MURI Project Meeting, Aug 25 2009: 36
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Enron: Joint Sender-Receiver Mode Probabilities
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Number of emails sent
between individuals,
grouped by modes.

receiver
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Ongoing and Future Work

e Add Markov dependence to the modes
— P(Cmy | m_,), e.g., model persistence
— Results in hidden Markov model
— Collapsed Gibbs sampling again applicable...

e Add richer structure
— Dependence on time of day, day of week
— Dependence on covariates
— Extend to relational events

e Integrate events with text
— Joint models over events and text associated with events
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