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Overview

● Content in a nutshell
– Yet Another Framework for modeling social microdynamics

– Another one?  Why?
● Fairly general
● Principled basis for inference (estimation, model comparison, 

etc.) from actually existing data
● Utilizes well-understood formalisms (event history analysis, 

discrete exponential families) 
● Fills a gap in current modeling capabilities

● Today:
– Introduction to modeling approach

– Sample application to WTC radio conversation (if time allows!)



Conceptual Motivation: 
Slicing the Temporal Pie

● How should one deal with 
dynamics of temporally 
non-extensive 
relationships?

● Classic logic: take "slices" 
through the temporal 
structure

– Finer slices reveal a more 
disaggregated view of the 
network

● Classic problem: how fine 
should the slices be? WTC Channel Z, Vertical Transportation













The Limit of Decomposition: 
Relational Events

Newark Airport Channel 36, CPD

Aggregate Network Event Structure
(MPG)

wtc_newark_ch36_operationsandterminals.mpg


Actions and Relational 
Events

● Action: discrete event in which one entity emits 
a behavior directed at one or more entities in its 
environment
– Useful "atomic unit" of human (or other!) activity

– Represent formally by relational events

● Relational event: a=(i,j,k,t)

– iS: "Sender" of event a; s(a)=i

– jR: "Receiver" of event a; r(a)=j

– kC: "Action type" ("category") for event a; c(a)=k

– tR: "Time" of event a; (a)=t



Events in Context

● Multiple actions form an event history, 
A
t
={a

i
: (a

i
)≤t}

– Take a
0
: (a

0
)=0 as "null action", (a

i
)≥ 0

– Possible actions at t given by A(A
t
)⊆S×R×C

● Forms support for next action

● Assume here that A(A
t
) finite, constant between actions; 

may be fixed, but need not be

● Goal: model A
t

– Treat actions as events in continuous time

– Hazards depend upon past history, covariates



Event Model Likelihood: 
Piecewise Exponential Case

● Natural simplifying assumption: actions arise as 
Poisson process with piecewise constant rates

– Intuition: hazard of each possible event is locally constant,  
which is constant, given complete event history up to that 
point

● Waiting times conditionally exponentially distributed
● Rates can change when events transpire, but not otherwise

– Compare to related assumption in Cox prop. hazards model

● Can use to implement event likelihood
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i
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The Problem of Uncertain 
Event Timing

● Likelihood of an event sequence depends on 
the detailed history
– Problem: exact timing is generally uncertain for many data 

sources (e.g., transcripts), though order is known

– What if we only have (temporally) ordinal data?

● Stochastic process theory to the rescue!

– Thm: Let X
1
,...,X

n
 be independent exponential r.v. w/rate 

parameters λ
1
,...,λ

n
.  Then the probability that x

i
=min{x

1
,...,x

n
} is 

λ
i
/(λ
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+...+λ

n
).

– Implication: likelihood of ordinal data is a product of 
multinomial likelihoods

● Identifies rate function up to a constant factor



Event Model Likelihood: 
Ordinal Data Case

● Using the above, we may write the likelihood of an 
event sequence A

t
 as follows:

● Dynamics governed by rate function, 

– Where 
0
 is an arbitrary constant, ∈ℝp is a parameter vector, 

and u: (i,j,A
t
,X)ℝp is a vector of sufficient statistics
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0 a∉A At 



Fitting the Event Model

● Given A
t
 and u, how do we estimate ?

– Parameters interpretable as logged rate multipliers (in u)

● We have p(A
t
|), so can conduct likelihood-

based inference

– Find MLE *=arg max

 p(A

t
|), e.g., using a variant 

Newton-Rapheson or other method

– Can also proceed in a Bayesian manner
● Posit p(), work with p(|A

t
)∝p(A

t
|)p()

– Some computational challenges when |A| is large; tricks 
like MC quadrature needed to deal with sum of rates 
across support



Example: Relational Dynamics 
in WTC Communications

● Data: six transcripts of radio communications 
among WTC responders
– PATH radio communications; Newark police, airport 

maintenance, and command post radio; NJ SPEN 2; and 
WTC police

● Each documents all radio contact within one group

● Propose effects, fit using ML
– Effects based on cognitive, interactional mechanisms

– Approximate asymptotic standard errors, p-values using 
inverse of estimated information matrix at MLE

– Use BIC to compare models, assess effects





Mechanisms and Effects

● To model conversation dynamics, choose sufficient 
statistics, u, based on prior theory
– Should incorporate behaviorally meaningful mechanisms, baseline effects

● A first cut: six classes of effects
– Persistence (P): previous out-alters salient for ego's out-calls

– Recency (R): more recent in-alters salient for ego's out-calls

– Triad effects (T): ego tends to seek/avoid out-calls based on transitive/cyclic 
completions, shared in/out partners

– Participation shifts (PS): tendencies reflecting "local" conversational norms 
(from Gibson, 2003)

– Preferential attachment (PA): ego tends to call those with more airtime

– Fixed effects (FE): heterogeneity in ego's tendency to send/receive



Joint and Marginal Models: 
BIC Scores

Network PATH Radio Newark Maint Newark Police NJSPEN 2 Newark CPD WTC Police
N 28 25 24 26 46 35
M 70 77 83 149 271 481

Null 927.93 985.13 1048.05 1930.14 4138.34 6812.60

P 755.99 702.57 786.26 1684.74 3796.24 5754.44
R 659.36 521.08 650.49 1431.95 2946.52 4081.38
T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
PS 512.57 309.80 361.36 1115.52 2001.39 2493.83
PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
FE 920.27 902.53 1041.14 1381.78 3337.86 4308.54

P+R+T+PS 517.00 331.57 379.95 1040.60 1955.18 2289.74
P+R+T+PS+PA 520.64 333.54 379.57 1041.73 1946.23 2245.71
P+R+T+PS+FE 607.69 419.13 470.36 1008.54 2009.70 2308.08
P+R+T+PS+PA+FE 610.71 423.47 469.99 1011.26 2014.76 2313.65



Joint and Marginal Models: 
BIC Scores

Network PATH Radio Newark Maint Newark Police NJSPEN 2 Newark CPD WTC Police
N 28 25 24 26 46 35
M 70 77 83 149 271 481

Null 927.93 985.13 1048.05 1930.14 4138.34 6812.60

P 755.99 702.57 786.26 1684.74 3796.24 5754.44
R 659.36 521.08 650.49 1431.95 2946.52 4081.38
T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
PS 512.57 309.80 361.36 1115.52 2001.39 2493.83
PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
FE 920.27 902.53 1041.14 1381.78 3337.86 4308.54

P+R+T+PS 517.00 331.57 379.95 1040.60 1955.18 2289.74
P+R+T+PS+PA 520.64 333.54 379.57 1041.73 1946.23 2245.71
P+R+T+PS+FE 607.69 419.13 470.36 1008.54 2009.70 2308.08
P+R+T+PS+PA+FE 610.71 423.47 469.99 1011.26 2014.76 2313.65



Joint and Marginal Models: 
BIC Scores

Network PATH Radio Newark Maint Newark Police NJSPEN 2 Newark CPD WTC Police
N 28 25 24 26 46 35
M 70 77 83 149 271 481

Null 927.93 985.13 1048.05 1930.14 4138.34 6812.60

P 755.99 702.57 786.26 1684.74 3796.24 5754.44
R 659.36 521.08 650.49 1431.95 2946.52 4081.38
T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
PS 512.57 309.80 361.36 1115.52 2001.39 2493.83
PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
FE 920.27 902.53 1041.14 1381.78 3337.86 4308.54

P+R+T+PS 517.00 331.57 379.95 1040.60 1955.18 2289.74
P+R+T+PS+PA 520.64 333.54 379.57 1041.73 1946.23 2245.71
P+R+T+PS+FE 607.69 419.13 470.36 1008.54 2009.70 2308.08
P+R+T+PS+PA+FE 610.71 423.47 469.99 1011.26 2014.76 2313.65

P-Shifts provide best marginal 
models, with Recency a distant 

second; Fixed Effects 
important for larger transcripts



Joint and Marginal Models: 
BIC Scores

Network PATH Radio Newark Maint Newark Police NJSPEN 2 Newark CPD WTC Police
N 28 25 24 26 46 35
M 70 77 83 149 271 481

Null 927.93 985.13 1048.05 1930.14 4138.34 6812.60

P 755.99 702.57 786.26 1684.74 3796.24 5754.44
R 659.36 521.08 650.49 1431.95 2946.52 4081.38
T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
PS 512.57 309.80 361.36 1115.52 2001.39 2493.83
PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
FE 920.27 902.53 1041.14 1381.78 3337.86 4308.54

P+R+T+PS 517.00 331.57 379.95 1040.60 1955.18 2289.74
P+R+T+PS+PA 520.64 333.54 379.57 1041.73 1946.23 2245.71
P+R+T+PS+FE 607.69 419.13 470.36 1008.54 2009.70 2308.08
P+R+T+PS+PA+FE 610.71 423.47 469.99 1011.26 2014.76 2313.65

Minimal joint models with P-
Shifts do well, but other effects 
contribute in large transcripts



Parameter Estimates, Joint Model



Parameter Estimates, Joint Model
Conversational 

Continuity

Reciprocity
 (Turn-Taking)

Reciprocity
 (Mnemonic)

Preferential 
Attachment 
(Negative!) Persistence



Conclusion

● Relational event model

– Fairly general form for discrete events with complex historical 
dependence

● Can specify event rates in terms of past history, covariates
● Set of possible events can evolve endogenously

– Applicable to sequence data as well as complete event 
histories (although pacing information is lost)

● Sample application; WTC radio communication

– Clear effects for conversational norms (continuity and turn-
taking), recency, persistence, and partner cycling

– Triadic effects weak to nonexistent
● Few opportunities in smaller data sets, so high uncertainty



Additional Slides



Explaining Hub Formation

● Two obvious classes of explanation
– Preferential attachment

● Exposure effects
● Emergent specialization

– Heterogeneity in base activity levels
● Institutional role
● The “latent safety” hypothesis

● Modeling the mechanisms
– Past total degree effect

– Fixed effects for communication activity

t

d

t

d



Persistence Effects

● Inertia-like effect: past contacts 
may tend to become future 
contacts
– Unobserved relational heterogeneity

– Availability to memory

– (Compare w/autocorrelation terms in an 
AR process)

● Simple implementation: fraction of 
previous contacts as predictor

– Log-rate of (i,j) contact adjusted by d
ij
/d
i

22
55
44

0.180.18
0.460.46
0.360.36



Recency/Ordering Effects

● Ordering of past contact 
potentially affects future contact
– Reciprocity norms

– Recency effects (salience)

● Simple parameterization: dyadic 
contact ordering effect
– Previous incoming contacts ranked

● Non-contacts treated as rank ∞

– Log-rate of outgoing (i,j) contact 
adjusted by (1/rank

ji
)

33
22
11

1/31/3
1/21/2
11



Triadic/Clustering Effects

?? ??

?? ??

● Can also control for endogenous 
triadic mechanisms
– Two-path effects

● Past outbound two-path flows lead 
to/inhibit direct contact (transitivity)

● Past inbound two-path flows lead 
to/inhibit direct contact (cyclicity)

– Shared partner effects
● Past outbound shared partners lead 

to/inhibit direct contact (common 
reference)

● Past inbound shared partners lead 
to/inhibit direct contact (common contact)

Shared Partner Effects

Two-Path Effects



Coordination, Hub Status 
and Institutional Role

● Importance of coordination well-known among 
practitioners (e.g., Auf der Heide, 1989)
– Response organizations include institutionalized coordinative 

roles, e.g., dispatchers, call desk operators

● Can hub status be explained via existing roles?
– “Institutionalized” vs. “emergent” coordinators (a la Dynes, 

1970)

● Coding from transcript content
– Title includes “command,” “desk,” “operator,” “dispatch,” 

“manager,” “control,” or “base”

– Responder identified with site (“Newark Airport”)
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