Modeling Relational Event Dynamics

Carter T. Butts¹²

University of California, Irvine

¹Department of Sociology ² Institute for Mathematical Behavioral Sciences

This work was supported by ONR award N00014-08-1-1015, NSF awards IIS-0331707 and CMS-0624257, and NIH award 5 R01 DA012831-05.

- Content in a nutshell
 - Yet Another Framework for modeling social microdynamics
 - Another one? Why?
 - Fairly general
 - Principled basis for inference (estimation, model comparison, etc.) from actually existing data
 - Utilizes well-understood formalisms (event history analysis, discrete exponential families)
 - Fills a gap in current modeling capabilities
- Today:
 - Introduction to modeling approach
 - Sample application to WTC radio conversation (if time allows!)

Conceptual Motivation: Slicing the Temporal Pie

- How should one deal with dynamics of temporally non-extensive relationships?
- Classic logic: take "slices" through the temporal structure
 - Finer slices reveal a more disaggregated view of the network
- Classic problem: how fine should the slices be?

WTC Channel Z, Vertical Transportation

The Limit of Decomposition: Relational Events

Newark Airport Channel 36, CPD

(MPG)

Actions and Relational Events

- Action: discrete event in which one entity emits a behavior directed at one or more entities in its environment
 - Useful "atomic unit" of human (or other!) activity
 - Represent formally by relational events
- **Relational event:** a=(i,j,k,t)
 - $i \in S$: "Sender" of event *a*; s(a)=i
 - $j \in \mathcal{R}$: "Receiver" of event *a*; r(a)=j
 - $k \in C$: "Action type" ("category") for event *a*; c(a)=k
 - $t \in \mathbb{R}$: "Time" of event *a*; $\tau(a) = t$

- Multiple actions form an event history, $A_t = \{a_i: \tau(a_i) \le t\}$
 - Take $a_0: \tau(a_0)=0$ as "null action", $\tau(a_i) \ge 0$
 - Possible actions at *t* given by $A(A_t) \subseteq S \times \mathcal{R} \times C$
 - Forms support for next action
 - Assume here that A(A_t) finite, constant between actions;
 may be fixed, but need not be
- Goal: model A_t
 - Treat actions as events in continuous time
 - Hazards depend upon past history, covariates

Event Model Likelihood: Piecewise Exponential Case

- Natural simplifying assumption: actions arise as Poisson process with piecewise constant rates
 - Intuition: hazard of each possible event is *locally* constant, which is constant, given complete event history up to that point
 - Waiting times conditionally exponentially distributed
 - Rates *can* change when events transpire, but not otherwise
 - Compare to related assumption in Cox prop. hazards model
- Can use to implement event likelihood

 $- \operatorname{Let} M = |At|, \ \tau_{i} = \tau(a_{i}), \ \text{w/hazard function} \ \lambda_{ijk} = \lambda(a_{i}, A_{k}, \theta); \text{ then}$ $p(A_{t}|\theta) = \left[\prod_{i=1}^{M} \left(\lambda_{a_{i}A_{\tau_{i-1}}\theta} \prod_{a' \in \mathsf{A}(A_{\tau_{i}})} \exp\left(-\lambda_{a'A_{\tau_{i-1}}\theta}\left[\tau_{i} - \tau_{i-1}\right]\right)\right)\right] \left[\prod_{a' \in \mathsf{A}(A_{t})} \exp\left(-\lambda_{a'A_{t}\theta}\left[t - \tau_{M}\right]\right)\right]$

The Problem of Uncertain Event Timing

- Likelihood of an event sequence depends on the detailed history
 - Problem: exact timing is generally uncertain for many data sources (e.g., transcripts), though order is known
 - What if we only have (temporally) ordinal data?

• Stochastic process theory to the rescue!

- Thm: Let $X_1, ..., X_n$ be independent exponential r.v. w/rate parameters $\lambda_1, ..., \lambda_n$. Then the probability that $x_i = \min\{x_1, ..., x_n\}$ is $\lambda_i/(\lambda_1 + ... + \lambda_n)$.
- Implication: likelihood of ordinal data is a product of multinomial likelihoods
 - Identifies rate function up to a constant factor

Event Model Likelihood: Ordinal Data Case

 Using the above, we may write the likelihood of an event sequence A, as follows:

$$p(A_t|\theta) = \prod_{i=1}^{M} \left[\frac{\lambda_{a_i A_{\tau_{i-1}}}}{\sum_{a' \in \mathsf{A}[A_{\tau_i}]} \lambda_{a_i A_{\tau_{i-1}}}} \right]$$

• Dynamics governed by rate function, λ

$$\lambda_{aA_{t}\theta} = \begin{cases} \exp\left(\lambda_{0} + \theta^{T} u\left(s(a), r(a), c(a), A_{t}, X_{a}\right)\right) & a \in \mathsf{A}\left(A_{t}\right) \\ 0 & a \notin \mathsf{A}\left(A_{t}\right) \end{cases}$$

- Where λ_0 is an arbitrary constant, $\theta \in \mathbb{R}^p$ is a parameter vector, and $u: (i,j,A_p,X) \rightarrow \mathbb{R}^p$ is a vector of sufficient statistics

Fitting the Event Model

- Given A_t and u, how do we estimate θ ?
 - Parameters interpretable as logged rate multipliers (in *u*)
- We have $p(A_t|\theta)$, so can conduct likelihoodbased inference
 - Find MLE $\theta^* = \arg \max_{\theta} p(A_t | \theta)$, e.g., using a variant Newton-Rapheson or other method
 - Can also proceed in a Bayesian manner
 - Posit $p(\theta)$, work with $p(\theta|A_t) \propto p(A_t|\theta)p(\theta)$
 - Some computational challenges when |A| is large; tricks like MC quadrature needed to deal with sum of rates across support

Example: Relational Dynamics in WTC Communications

- Data: six transcripts of radio communications
 among WTC responders
 - PATH radio communications; Newark police, airport maintenance, and command post radio; NJ SPEN 2; and WTC police
 - Each documents all radio contact within one group
- Propose effects, fit using ML
 - Effects based on cognitive, interactional mechanisms
 - Approximate asymptotic standard errors, *p*-values using inverse of estimated information matrix at MLE
 - Use BIC to compare models, assess effects

- To model conversation dynamics, choose sufficient statistics, *u*, based on prior theory
 - Should incorporate behaviorally meaningful mechanisms, baseline effects

• A first cut: six classes of effects

- Persistence (P): previous out-alters salient for ego's out-calls
- Recency (R): more recent in-alters salient for ego's out-calls
- Triad effects (T): ego tends to seek/avoid out-calls based on transitive/cyclic completions, shared in/out partners
- Participation shifts (PS): tendencies reflecting "local" conversational norms (from Gibson, 2003)
- Preferential attachment (PA): ego tends to call those with more airtime
- Fixed effects (FE): heterogeneity in ego's tendency to send/receive

Network	PATH Radio	Newark Maint	Newark Police	NJSPEN 2	Newark CPD	WTC Police
Ν	28	25	24	26	46	35
Μ	70	77	83	149	271	481
Null	927.93	985.13	1048.05	1930.14	4138.34	6812.60
Р	755.99	702.57	786.26	1684.74	3796.24	5754.44
R	659.36	521.08	650.49	1431.95	2946.52	4081.38
Т	941.95	999.79	1060.45	1780.55	4034.06	5853.89
PS	512.57	309.80	361.36	1115.52	2001.39	2493.83
PA	902.86	901.04	1021.68	1711.58	3766.50	5703.66
FE	920.27	902.53	1041.14	1381.78	3337.86	6 4308.54
P+R+T+PS	517.00	331.57	379.95	1040.60	1955.18	3 2289.74
P+R+T+PS+PA	520.64	333.54	379.57	1041.73	1946.23	3 2245.71
P+R+T+PS+FE	607.69	419.13	470.36	1008.54	2009.70) 2308.08
P+R+T+PS+PA+FE	610.71	423.47	469.99	1011.26	2014.76	2313.65

Network	PATH Radio	Newark Maint	Newark Police	NJSPEN 2	Newark CPD	WTC Police
Ν	28	25	24	26	46	35
M	70	77	83	149	271	481
Null	927.93	985.13	1048.05	1930.14	4138.34	6812.60
Р	755.99	702.57	786.26	1684.74	3796.24	5754.44
R	659.36	521.08	650.49	1431.95	2946.52	4081.38
Т	941.95	999.79	1060.45	1780.55	4034.06	5853.89
PS	512.57	309.80	361.36	1115.52	2001.39	2493.83
PA	902.86	901.04	1021.68	1711.58	3766.50	5703.66
FE	920.27	902.53	1041.14	1381.78	3337.86	6 4308.54
P+R+T+PS	517.00	331.57	379.95	1040.60	1955.18	3 2289.74
P+R+T+PS+PA	520.64	333.54	379.57	1041.73	1946.23	8 2245.71
P+R+T+PS+FE	607.69	419.13	470.36	1008.54	2009.70	2308.08
P+R+T+PS+PA+FE	610.71	423.47	469.99	1011.26	2014.76	6 2313.65

Network	PATH Radio	Newark Maint N	Newark Police I	NJSPEN 2	Newark CPD	WTC Police
Ν	28	3 25	24	26	46	35
Μ	7() 77	83	149	271	481
Null		fts prov				
Р	mode	ls, with	Recenc	cy a di	stant 24	5754.44
R						
Т	941.	second;	FIXED E	mects	4034.06	5853.89
PS	impo	rtant for	largor	transc	rinte ³⁹	2493.83
PA	mpoi	tant ivi	laryer	liansu		5703.66
FE	920.27	902.53	1041.14	1381.78	3337.86	6 4308.54
P+R+T+PS	517.00) 331.57	379.95	1040.60	1955.18	3 2289.74
P+R+T+PS+PA	520.64	333.54	379.57	1041.73	1946.23	3 2245.71
P+R+T+PS+FE	607.69	9 419.13	470.36	1008.54	2009.70	2308.08
P+R+T+PS+PA+FE	610.71	423.47	469.99	1011.26	2014.76	6 2313.65

Network	PATH Radio	Newark Maint No	ewark Police NJ	ISPEN 2 Nev	wark CPD	WTC Police
Ν	28	3 25	24	26	46	35
Μ	7() 77	83	149	271	481
Null		imal join				6812.60
Р	Shifts	s do well	, but ot	her eff	ects 4	5754.44
R	050.00		CE0.40		2040	4081.38
Т	cont	ribute in	large ti	ranscr	Ιρτς	5853.89
PS	512.57		361.36	1115.52	2001.39	2493.83
PA	902.86	901.04	1021.68	1711.58	3766.50	5703.66
FE	920.27	902.53	1041.14	1381.78	3337.86	4308.54
P+R+T+PS	517.00) 331.57	379.95	1040.60	1955.18	2289.74
P+R+T+PS+PA	520.64	333.54	379.57	1041.73	1946.23	2245.71
P+R+T+PS+FE	607.69	9 419.13	470.36	1008.54	2009.70	2308.08
P+R+T+PS+PA+FE	610.7 <i>°</i>	423.47	469.99	1011.26	2014.76	2313.65

PS-ABAY -PS_ABXB -PS-ABXA PS-ABBY -PS-ABBA -T-ISP T-OSP T-ITP T-OPT **R** - PATH Radio Newark Maint Ρ. Newark Police NJSPEN 2 **PA** – Newark CPD WTC Police -20 -15 -10 -5 0 5

MLEs for Event Model Parameters, w/Asymptotic 95% Cls

 $\hat{\theta}$

MLEs for Event Model Parameters, w/Asymptotic 95% Cls

- Relational event model
 - Fairly general form for discrete events with complex historical dependence
 - Can specify event rates in terms of past history, covariates
 - Set of possible events can evolve endogenously
 - Applicable to sequence data as well as complete event histories (although pacing information is lost)

• Sample application; WTC radio communication

- Clear effects for conversational norms (continuity and turntaking), recency, persistence, and partner cycling
- Triadic effects weak to nonexistent
 - Few opportunities in smaller data sets, so high uncertainty

Additional Slides

Explaining Hub Formation

Two obvious classes of explanation

- Preferential attachment
 - Exposure effects
 - Emergent specialization
- Heterogeneity in base activity levels
 - Institutional role
 - The "latent safety" hypothesis

Modeling the mechanisms

- Past total degree effect
- Fixed effects for communication activity

- Inertia-like effect: past contacts may tend to become future contacts
 - Unobserved relational heterogeneity
 - Availability to memory
 - (Compare w/autocorrelation terms in an AR process)
- Simple implementation: fraction of previous contacts as predictor
 - Log-rate of (i,j) contact adjusted by $\theta d_{ij}/d_i$

Recency/Ordering Effects

- Ordering of past contact
 potentially affects future contact
 - Reciprocity norms
 - Recency effects (salience)
- Simple parameterization: dyadic contact ordering effect
 - Previous incoming contacts ranked
 - Non-contacts treated as rank ∞
 - Log-rate of outgoing (i,j) contact adjusted by $\theta(1/\text{rank}_{ji})$

- Can also control for endogenous triadic mechanisms
 - Two-path effects
 - Past outbound two-path flows lead to/inhibit direct contact (transitivity)
 - Past inbound two-path flows lead to/inhibit direct contact (cyclicity)
 - Shared partner effects
 - Past outbound shared partners lead to/inhibit direct contact (common reference)
 - Past inbound shared partners lead to/inhibit direct contact (common contact)

Two-Path Effects

Shared Partner Effects

Coordination, Hub Status and Institutional Role

- Importance of coordination well-known among practitioners (e.g., Auf der Heide, 1989)
 - Response organizations include institutionalized coordinative roles, e.g., dispatchers, call desk operators
- Can hub status be explained via existing roles?
 - "Institutionalized" vs. "emergent" coordinators (*a la* Dynes, 1970)
- Coding from transcript content
 - Title includes "command," "desk," "operator," "dispatch,"
 "manager," "control," or "base"
 - Responder identified with site ("Newark Airport")