Modeling Relational Event Dynamics

Carter T. Butts1,2

University of California, Irvine

1Department of Sociology
2Institute for Mathematical Behavioral Sciences

This work was supported by ONR award N00014-08-1-1015, NSF awards IIS-0331707 and CMS-0624257, and NIH award 5 R01 DA012831-05.
Overview

- Content in a nutshell
 - Yet Another Framework for modeling social microdynamics
 - Another one? Why?
 - Fairly general
 - Principled basis for inference (estimation, model comparison, etc.) from actually existing data
 - Utilizes well-understood formalisms (event history analysis, discrete exponential families)
 - Fills a gap in current modeling capabilities

- Today:
 - Introduction to modeling approach
 - Sample application to WTC radio conversation (if time allows!)
Conceptual Motivation: Slicing the Temporal Pie

- How should one deal with dynamics of temporally non-extensive relationships?
- Classic logic: take "slices" through the temporal structure
 - Finer slices reveal a more disaggregated view of the network
- Classic problem: how fine should the slices be?

WTC Channel Z, Vertical Transportation
The Limit of Decomposition: Relational Events

Newark Airport Channel 36, CPD

Aggregate Network

Event Structure
Actions and Relational Events

• Action: discrete event in which one entity emits a behavior directed at one or more entities in its environment
 – Useful "atomic unit" of human (or other!) activity
 – Represent formally by relational events

• Relational event: \(a = (i, j, k, t) \)
 – \(i \in S \): "Sender" of event \(a \); \(s(a) = i \)
 – \(j \in R \): "Receiver" of event \(a \); \(r(a) = j \)
 – \(k \in C \): "Action type" ("category") for event \(a \); \(c(a) = k \)
 – \(t \in \mathbb{R} \): "Time" of event \(a \); \(\tau(a) = t \)
Events in Context

- Multiple actions form an event history,
 \[A_t = \{ a_i : \tau(a_i) \leq t \} \]
 - Take \(a_0 : \tau(a_0) = 0 \) as "null action", \(\tau(a_i) \geq 0 \)
 - Possible actions at \(t \) given by \(A(A_t) \subseteq S \times R \times C \)
 - Forms support for next action
 - Assume here that \(A(A_t) \) finite, constant between actions; may be fixed, but need not be

- Goal: model \(A_t \)
 - Treat actions as events in continuous time
 - Hazards depend upon past history, covariates
Event Model Likelihood: Piecewise Exponential Case

- **Natural simplifying assumption**: actions arise as Poisson process with piecewise constant rates
 - Intuition: hazard of each possible event is *locally* constant, which is constant, given complete event history up to that point
 - Waiting times conditionally exponentially distributed
 - Rates *can* change when events transpire, but not otherwise
 - Compare to related assumption in Cox prop. hazards model

- **Can use to implement event likelihood**
 - Let $M = |At|$, $\tau_i = \tau(a_i)$, w/hazard function $\lambda_{ijk} = \lambda(a_i, A_k, \theta)$; then
 $$p(A_t | \theta) = \prod_{i=1}^{M} \left(\lambda_{a_i, A_{\tau_i-1}, \theta} \prod_{a' \in A_{\tau_i-1}} \exp \left(-\lambda_{a', A_{\tau_i-1}, \theta} [\tau_i - \tau_{i-1}] \right) \right) \prod_{a' \in A_{\tau_i}} \exp \left(-\lambda_{a', A, \theta} [t - \tau_M] \right)$$
The Problem of Uncertain Event Timing

- Likelihood of an event sequence depends on the detailed history
 - Problem: exact timing is generally uncertain for many data sources (e.g., transcripts), though order is known
 - What if we only have (temporally) ordinal data?

- Stochastic process theory to the rescue!
 - Thm: Let $X_1,...,X_n$ be independent exponential r.v. w/rate parameters $\lambda_1,...,\lambda_n$. Then the probability that $x_i=\min\{x_1,...,x_n\}$ is $\lambda_i/(\lambda_1+...+\lambda_n)$.
 - Implication: likelihood of ordinal data is a product of multinomial likelihoods
 - Identifies rate function up to a constant factor
Event Model Likelihood: Ordinal Data Case

• Using the above, we may write the likelihood of an event sequence A_t as follows:

$$p(A_t|\theta) = \prod_{i=1}^{M} \left[\frac{\lambda_{a_t A_{t-1}, \theta}}{\sum_{a' \in A(A_t)} \lambda_{a_t A_{t-1}, \theta}} \right]$$

• Dynamics governed by rate function, λ

$$\lambda_{a A_t, \theta} = \begin{cases}
\exp \left(\lambda_0 + \theta^T u \left(s(a), r(a), c(a), A_t, X_a \right) \right) & a \in A(A_t) \\
0 & a \notin A(A_t)
\end{cases}$$

- Where λ_0 is an arbitrary constant, $\theta \in \mathbb{R}^p$ is a parameter vector, and $u: (i,j,A_t,X) \rightarrow \mathbb{R}^p$ is a vector of sufficient statistics
Fitting the Event Model

- Given A_t and u, how do we estimate θ?
 - Parameters interpretable as logged rate multipliers (in u)
- We have $p(A_t|\theta)$, so can conduct likelihood-based inference
 - Find MLE $\theta^* = \arg\max_{\theta} p(A_t|\theta)$, e.g., using a variant Newton-Rapheson or other method
 - Can also proceed in a Bayesian manner
 - Posit $p(\theta)$, work with $p(\theta|A_t) \propto p(A_t|\theta)p(\theta)$
 - Some computational challenges when $|A|$ is large; tricks like MC quadrature needed to deal with sum of rates across support
Example: Relational Dynamics in WTC Communications

- **Data**: six transcripts of radio communications among WTC responders
 - PATH radio communications; Newark police, airport maintenance, and command post radio; NJ SPEN 2; and WTC police
 - Each documents all radio contact within one group
- **Propose effects, fit using ML**
 - Effects based on cognitive, interactional mechanisms
 - Approximate asymptotic standard errors, \(p \)-values using inverse of estimated information matrix at MLE
 - Use BIC to compare models, assess effects
Mechanisms and Effects

- To model conversation dynamics, choose sufficient statistics, u, based on prior theory
 - Should incorporate behaviorally meaningful mechanisms, baseline effects

- A first cut: six classes of effects
 - Persistence (P): previous out-alters salient for ego's out-calls
 - Recency (R): more recent in-alters salient for ego's out-calls
 - Triad effects (T): ego tends to seek/avoid out-calls based on transitive/cyclic completions, shared in/out partners
 - Participation shifts (PS): tendencies reflecting "local" conversational norms (from Gibson, 2003)
 - Preferential attachment (PA): ego tends to call those with more airtime
 - Fixed effects (FE): heterogeneity in ego's tendency to send/receive
Joint and Marginal Models: BIC Scores

<table>
<thead>
<tr>
<th>Network</th>
<th>PATH Radio</th>
<th>Newark Maint</th>
<th>Newark Police</th>
<th>NJSPEN 2</th>
<th>Newark CPD</th>
<th>WTC Police</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>46</td>
<td>35</td>
<td>927.93</td>
</tr>
<tr>
<td>M</td>
<td>70</td>
<td>77</td>
<td>83</td>
<td>149</td>
<td>271</td>
<td>481</td>
<td>755.99</td>
</tr>
</tbody>
</table>

Null | 927.93 | 985.13 | 1048.05 | 1930.14 | 4138.34 | 6812.60 |

P | 755.99 | 702.57 | 786.26 | 1684.74 | 3796.24 | 5754.44 |

R | 659.36 | 521.08 | 650.49 | 1431.95 | 2946.52 | 4081.38 |

T | 941.95 | 999.79 | 1060.45 | 1780.55 | 4034.06 | 5853.89 |

PS | 512.57 | 309.80 | 361.36 | 1115.52 | 2001.39 | 2493.83 |

PA | 902.86 | 901.04 | 1021.68 | 1711.58 | 3766.50 | 5703.66 |

FE | 920.27 | 902.53 | 1041.14 | 1381.78 | 3337.86 | 4308.54 |

P+R+T+PS| 517.00 | 331.57 | 379.95 | 1040.60 | 1955.18 | 2289.74 |

P+R+T+PS+PA | 520.64 | 333.54 | 379.57 | 1041.73 | 1946.23 | 2245.71 |

P+R+T+PS+FE | 607.69 | 419.13 | 470.36 | 1008.54 | 2009.70 | 2308.08 |

P+R+T+PS+PA+FE | 610.71 | 423.47 | 469.99 | 1011.26 | 2014.76 | 2313.65 |
Joint and Marginal Models: BIC Scores

<table>
<thead>
<tr>
<th>Network</th>
<th>PATH Radio</th>
<th>Newark Maint</th>
<th>Newark Police</th>
<th>NJSPEN 2</th>
<th>Newark CPD</th>
<th>WTC Police</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>927.93</td>
<td>985.13</td>
<td>1048.05</td>
<td>1930.14</td>
<td>4138.34</td>
<td>6812.60</td>
</tr>
<tr>
<td>P</td>
<td>755.99</td>
<td>702.57</td>
<td>786.26</td>
<td>1684.74</td>
<td>3796.24</td>
<td>5754.44</td>
</tr>
<tr>
<td>R</td>
<td>659.36</td>
<td>521.08</td>
<td>650.49</td>
<td>1431.95</td>
<td>2946.52</td>
<td>4081.38</td>
</tr>
<tr>
<td>T</td>
<td>941.95</td>
<td>999.79</td>
<td>1060.45</td>
<td>1780.55</td>
<td>4034.06</td>
<td>5853.89</td>
</tr>
<tr>
<td>PS</td>
<td>512.57</td>
<td>309.80</td>
<td>361.36</td>
<td>1115.52</td>
<td>2001.39</td>
<td>2493.83</td>
</tr>
<tr>
<td>PA</td>
<td>902.86</td>
<td>901.04</td>
<td>1021.68</td>
<td>1711.58</td>
<td>3766.50</td>
<td>5703.66</td>
</tr>
<tr>
<td>FE</td>
<td>920.27</td>
<td>902.53</td>
<td>1041.14</td>
<td>1381.78</td>
<td>3337.86</td>
<td>4308.54</td>
</tr>
<tr>
<td>P+R+T+PS</td>
<td>517.00</td>
<td>331.57</td>
<td>379.95</td>
<td>1040.60</td>
<td>1955.18</td>
<td>2289.74</td>
</tr>
<tr>
<td>P+R+T+PS+PA</td>
<td>520.64</td>
<td>333.54</td>
<td>379.57</td>
<td>1041.73</td>
<td>1946.23</td>
<td>2245.71</td>
</tr>
<tr>
<td>P+R+T+PS+FE</td>
<td>607.69</td>
<td>419.13</td>
<td>470.36</td>
<td>1008.54</td>
<td>2009.70</td>
<td>2308.08</td>
</tr>
<tr>
<td>P+R+T+PS+PA+FE</td>
<td>610.71</td>
<td>423.47</td>
<td>469.99</td>
<td>1011.26</td>
<td>2014.76</td>
<td>2313.65</td>
</tr>
</tbody>
</table>
Joint and Marginal Models: BIC Scores

<table>
<thead>
<tr>
<th>Network</th>
<th>PATH Radio</th>
<th>Newark Maint</th>
<th>Newark Police</th>
<th>NJSPEN 2</th>
<th>Newark CPD</th>
<th>WTC Police</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>M</td>
<td>70</td>
<td>77</td>
<td>83</td>
<td>149</td>
<td>271</td>
<td>481</td>
</tr>
<tr>
<td>Null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>659.36</td>
<td>521.08</td>
<td>650.44</td>
<td>1431.95</td>
<td>2946.52</td>
<td>4081.38</td>
</tr>
<tr>
<td>R</td>
<td>941.95</td>
<td>999.79</td>
<td>1060.45</td>
<td>1780.55</td>
<td>4034.06</td>
<td>5853.89</td>
</tr>
<tr>
<td>T</td>
<td>920.27</td>
<td>902.53</td>
<td>1041.14</td>
<td>1381.78</td>
<td>3337.86</td>
<td>4308.54</td>
</tr>
<tr>
<td>PS</td>
<td>512.57</td>
<td>309.80</td>
<td>361.36</td>
<td>1115.52</td>
<td>2001.39</td>
<td>2493.83</td>
</tr>
<tr>
<td>PA</td>
<td>902.86</td>
<td>901.04</td>
<td>1021.68</td>
<td>1711.58</td>
<td>3766.50</td>
<td>5703.66</td>
</tr>
<tr>
<td>FE</td>
<td>920.27</td>
<td>902.53</td>
<td>1041.14</td>
<td>1381.78</td>
<td>3337.86</td>
<td>4308.54</td>
</tr>
<tr>
<td>P+R+T+PS</td>
<td>517.00</td>
<td>331.57</td>
<td>379.95</td>
<td>1040.60</td>
<td>1955.18</td>
<td>2289.74</td>
</tr>
<tr>
<td>P+R+T+PS+PA</td>
<td>520.64</td>
<td>333.54</td>
<td>379.57</td>
<td>1041.73</td>
<td>1946.23</td>
<td>2245.71</td>
</tr>
<tr>
<td>P+R+T+PS+FE</td>
<td>607.69</td>
<td>419.13</td>
<td>470.36</td>
<td>1008.54</td>
<td>2009.70</td>
<td>2308.08</td>
</tr>
<tr>
<td>P+R+T+PS+PA+FE</td>
<td>610.71</td>
<td>423.47</td>
<td>469.99</td>
<td>1011.26</td>
<td>2014.76</td>
<td>2313.65</td>
</tr>
</tbody>
</table>

P-Shifts provide best marginal models, with Recency a distant second; Fixed Effects important for larger transcripts.
Joint and Marginal Models: BIC Scores

<table>
<thead>
<tr>
<th>Network</th>
<th>PATH Radio</th>
<th>Newark Maint</th>
<th>Newark Police</th>
<th>NJSPEN 2</th>
<th>Newark CPD</th>
<th>WTC Police</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>46</td>
<td>35</td>
<td>6812.60</td>
</tr>
<tr>
<td>M</td>
<td>70</td>
<td>77</td>
<td>83</td>
<td>149</td>
<td>271</td>
<td>481</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Null</td>
<td>512.57</td>
<td>309.80</td>
<td>361.36</td>
<td>1115.52</td>
<td>2001.39</td>
<td>2493.83</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>902.86</td>
<td>901.04</td>
<td>1021.68</td>
<td>1711.58</td>
<td>3766.50</td>
<td>5703.66</td>
<td>5754.44</td>
</tr>
<tr>
<td>R</td>
<td>920.27</td>
<td>902.53</td>
<td>1041.14</td>
<td>1381.78</td>
<td>3337.86</td>
<td>4308.54</td>
<td>5853.89</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P+R+T+PS</td>
<td>517.00</td>
<td>331.57</td>
<td>379.95</td>
<td>1040.60</td>
<td>1955.18</td>
<td>2289.74</td>
<td></td>
</tr>
<tr>
<td>P+R+T+PS+PA</td>
<td>520.64</td>
<td>333.54</td>
<td>379.57</td>
<td>1041.73</td>
<td>1946.23</td>
<td>2245.71</td>
<td></td>
</tr>
<tr>
<td>P+R+T+PS+FE</td>
<td>607.69</td>
<td>419.13</td>
<td>470.36</td>
<td>1008.54</td>
<td>2009.70</td>
<td>2308.08</td>
<td></td>
</tr>
<tr>
<td>P+R+T+PS+PA+FE</td>
<td>610.71</td>
<td>423.47</td>
<td>469.99</td>
<td>1011.26</td>
<td>2014.76</td>
<td>2313.65</td>
<td></td>
</tr>
</tbody>
</table>

Minimal joint models with P-Shifts do well, but other effects contribute in large transcripts.
MLEs for Event Model Parameters, w/Asymptotic 95% CIs

Parameter Estimates, Joint Model

Conversational Continuity

Reciprocity (Turn-Taking)

Reciprocity (Mnemonic)

Preferential Attachment (Negative!)

Persistence

PATH Radio
Newark Maint
Newark Police
NJSPEN 2
Newark CPD
WTC Police
Conclusion

● Relational event model
 – Fairly general form for discrete events with complex historical dependence
 • Can specify event rates in terms of past history, covariates
 • Set of possible events can evolve endogenously
 – Applicable to sequence data as well as complete event histories (although pacing information is lost)

● Sample application; WTC radio communication
 – Clear effects for conversational norms (continuity and turn-taking), recency, persistence, and partner cycling
 – Triadic effects weak to nonexistent
 • Few opportunities in smaller data sets, so high uncertainty
Additional Slides
Explaining Hub Formation

- Two obvious classes of explanation
 - Preferential attachment
 - Exposure effects
 - Emergent specialization
 - Heterogeneity in base activity levels
 - Institutional role
 - The “latent safety” hypothesis
- Modeling the mechanisms
 - Past total degree effect
 - Fixed effects for communication activity
Persistence Effects

- Inertia-like effect: past contacts may tend to become future contacts
 - Unobserved relational heterogeneity
 - Availability to memory
 - (Compare w/autocorrelation terms in an AR process)

- Simple implementation: fraction of previous contacts as predictor
 - Log-rate of (i,j) contact adjusted by $\theta d_{ij}/d_i$
Recency/Ordering Effects

• Ordering of past contact potentially affects future contact
 - Reciprocity norms
 - Recency effects (salience)

• Simple parameterization: dyadic contact ordering effect
 - Previous incoming contacts ranked
 • Non-contacts treated as rank \(\infty \)
 - Log-rate of outgoing \((i,j)\) contact adjusted by \(\theta(1/rank_{ji})\)
Can also control for endogenous triadic mechanisms

- Two-path effects
 - Past outbound two-path flows lead to/inhibit direct contact (transitivity)
 - Past inbound two-path flows lead to/inhibit direct contact (cyclicity)

- Shared partner effects
 - Past outbound shared partners lead to/inhibit direct contact (common reference)
 - Past inbound shared partners lead to/inhibit direct contact (common contact)
Coordination, Hub Status and Institutional Role

- Importance of coordination well-known among practitioners (e.g., Auf der Heide, 1989)
 - Response organizations include institutionalized coordinative roles, e.g., dispatchers, call desk operators
- Can hub status be explained via existing roles?
 - “Institutionalized” vs. “emergent” coordinators (a la Dynes, 1970)
- Coding from transcript content
 - Title includes “command,” “desk,” “operator,” “dispatch,” “manager,” “control,” or “base”
 - Responder identified with site (“Newark Airport”)