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Example of Social Relationships between Monks

Expressed “liking” between 18 monks within an isolated monastery
⇒ Sampson (1969)

A directed relationship aggregated over a 12 month period before the
breakup of the cloister.
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Features of Many Social Networks

Mutuality of ties

Individual propensity to form ties varies by actor attributes

Homophily by actor attributes
⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography

Transitivity of relationships
friends of friends have a higher propensity to be friends
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Clustering and Social Networks

Three types of clustering in social networks:
transitivity of relationships
homophily of actors with similar observed characteristics
further clustering that could be due to:

homophily on unobserved attributes, or
“self-organization” into groups

Drawing conclusions about clustering of social actors is often a focus
of interest in social network analysis

But most methods don’t address it directly

Instead conclusions about clustering are often drawn by informally
eyeballing results from other methods

We present a statistical model of social networks that incorporates
clustering and allows formal inference about:

whether or not there is clustering (beyond transitivity)
if so, how many groups there are
who is in what group
uncertainty about group memberships
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Statistical Models for Social Networks

Notation
A social network is defined as a set of n social “actors” and a social
relationship between each pair of actors.

Yij =

{
1 relationship from actor i to actor j

0 otherwise

call Y ≡ [Yij ]n×n a sociomatrix
a N = n(n − 1) binary array

The basic problem of stochastic modeling is to specify a distribution
for Y i.e., P(Y = y)
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Positing Latent Social Structure via Random Effects

model an underlying latent “social space” of actors
Latent space models: Hoff, Raftery and Handcock (2002)

Hoff (2003, 2004 ,...)

Hierarchical model for the network:
Actors i and j are an unknown distance apart in social space
Conditional on the distances the ties are independent

Let:

{δi} individual propensity of the actors to form ties
{γi} individual propensity of the actors to receive ties
{zi} be the positions of the actors in the social space Rk

{xi,j} denote observed characteristics that may be
dyad-specific and vector-valued

Specifically:

log odds(Yij = 1|zi , zj , xij , β) = βT xij − |zi − zj | + δi + γj

where β denotes parameters to be estimated.
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Model-based Clustering of Social Networks

Model the latent positions as clustered into G groups:

z i
i.i.d.∼

G∑

g=1

λgMVNd(µg , σ2
g Id)

Spherical covariance motivated by invariance

captures position, transitivity, homophily on attributes, and
clustering

captures individual propensities to form and receive ties

δi
i.i.d.∼ N(0, σ2

δ) i = 1, . . . , n,

γi
i.i.d.∼ N(0, σ2

γ) i = 1, . . . , n,
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Graphical Structure of the Model

Graph of Conditional Independence
What Can be Gibbs-Sampled?

Gray regions represent cliques.

! Variables separated from the data (Y ) have closed-form full conditionals.

! Others have to be sampled using Metropolis-Hastings.



Structure of the algorithm
Bayesian inference implemented via Markov Chain Monte Carlo (MCMC)
Let Ki be the cluster of actor i .
Some full conditional posterior distributions are available:

σ2
δ |δ, . . . ∼

(
αδσ

2
0,δ +

n∑

i=1

δ2
i

)
Invχ2

αδ+n,

σ2
γ |γ, . . . ∼

(
αγσ2

0,γ +
n∑

i=1

γ2
i

)
Invχ2

αγ+n,

µg |Z ,K , σ2
g , . . .

ind∼ MVNd

(
ng Z̄g

ng + σ2
g/ω2

,
σ2

g

ng + σ2
g/ω2

)
,

σ2
g |Z ,K , µg , . . .

ind∼
(
αZσ2

Z ,0 + SSZg

)
Invχ2

αZ +ngd ,

λ|K , . . . ∼ Dirichlet (ν1 + n1, . . . , νG + nG ) ,

Pr
(
Ki = g |λ, Z , µg , σ2

g , . . .
) ind

=
λg fMVNd(µg ,σ2

g Id)(Zi )
∑G

k=1 λk fMVNd(µk ,σ2
k Id)

(Zi )
i = 1, . . . , n,



where

SSZg =
n∑

i=1

1Ki=g (Zi − µg )T (Zi − µg ) ,

ng =
n∑

i=1

1Ki=g

and φd(·;µ,Σ) is the d-dimensional multivariate normal density.



Algorithmic details

Our algorithm is then as follows:
1 Use Metropolis-Hastings to sample Zt+1, updating each actor in

random order:
1 Propose Z∗

i ∼ MVNd(Zti , δ
2
Z Id).

2 With probability equal to

P(Y |Z∗, X , βt)φd(Z
∗
i ; µKi

, σ2
Ki

Id)

P(Y |Zt , X , βt)φd(Zit ; µKi
, σ2

Ki
Id)

,

set the ith element of Zt+1 to Z∗
i . Otherwise set it to Zit .

2 Use Metropolis-Hastings to sample βt+1:
1 Propose β∗ ∼ MVNd(βt , δ

2
β Ip).

2 With probability equal to

P(Y |Zt+1, X , β∗)φp(β∗; ξ, Ψ)
P(Y |Zt+1, X , βt)φp(βt ; ξ, Ψ)

,

set βt+1 = β∗. Otherwise set βt+1 = βt .

3 Update, Ki , µg , σ2
g and λg from (3), (4), (5) and (6).



Estimation

Two-Stage Maximum Likelihood Estimation
1 Find the MLE of the latent positions via (unclustered) latent space

model
⇒ Hoff, Raftery, Handcock (2002)

2 Apply model-based clustering conditional on estimated latent
positions

Use EM as in the R package mclust (Fraley and Raftery 1998)

fast and simple

cluster structure not used to estimate positions
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Bayesian Estimation

We use the following prior distributions:

β ∼ MVNp(ξ,Ψ),

λ ∼ Dirichlet(ν),

σ2
δ ∼ αδσ

2
0,δ Invχ2

αδ
,

σ2
γ ∼ αγσ2

0,γ Invχ2
αγ

,

σ2
g

i.i.d.∼ αZσ2
0,Z Invχ2

αZ
g = 1, . . . ,G ,

µg
i.i.d.∼ MVNd

(
0, ω2Id

)
, g = 1 . . .G ,

where ξ, Ψ, ν = (ν1, . . . , νG ), σ2
0,Z , αZ , σ2

0,δ, αδ, σ2
0,γ , αγ , and ω2 are

hyperparameters.

We set:

νg = 3 (low probability of small groups)
ξ = 0 and Ψ = 2I (allows a wide range of values of β)
α = 2 and σ2

0 = 0.103 (within-group variation can be small)
ω2 = 2 (prior density of the means is relatively flat)

Posterior distribution approximated by Markov chain Monte Carlo
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Identifiability of Positions and Cluster Labels

The likelihood is a function of the latent positions only through their
distances

The likelihood is also invariant to relabelling of the clusters

Resolve nonidentifiabilities by postprocessing the MCMC output.

First, Procrustes transform the actor positions and
the cluster means and covariances.

Idea
Choose the configuration that minimizes the Kullback-Leibler divergence
from the “true” distributions.

1 Find the minimum Kullback-Leibler positions of the actors
relative to P(Y |Z ,X , β).

2 Find the minimum Kullback-Leibler cluster membership
probabilities over all label permutations.
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Choosing the Number of Groups

We recast the choice of number of groups as a model selection
problem: Each number of groups is viewed as a different statistical
model.

Bayesian model selection (approximated by a version of BIC)
determines the number of groups

If the preferred number of groups is 1, there is no evidence for
clustering

We use conditional posterior model probabilities:

conditioning on an estimate of the latent positions, Ẑ
integrating over the other parameters

Justification:

Evaluates the specific latent positions that will be used
Worked well in a similar model: model-based clustering with
dissimilarities (Oh & Raftery 2003)
Simplifies calculations
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integrating over the other parameters

Justification:

Evaluates the specific latent positions that will be used
Worked well in a similar model: model-based clustering with
dissimilarities (Oh & Raftery 2003)
Simplifies calculations



Choosing the Number of Groups

We recast the choice of number of groups as a model selection
problem: Each number of groups is viewed as a different statistical
model.

Bayesian model selection (approximated by a version of BIC)
determines the number of groups

If the preferred number of groups is 1, there is no evidence for
clustering

We use conditional posterior model probabilities:

conditioning on an estimate of the latent positions, Ẑ
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integrating over the other parameters

Justification:

Evaluates the specific latent positions that will be used
Worked well in a similar model: model-based clustering with
dissimilarities (Oh & Raftery 2003)
Simplifies calculations



Choosing the Number of Groups

We recast the choice of number of groups as a model selection
problem: Each number of groups is viewed as a different statistical
model.

Bayesian model selection (approximated by a version of BIC)
determines the number of groups

If the preferred number of groups is 1, there is no evidence for
clustering

We use conditional posterior model probabilities:
conditioning on an estimate of the latent positions, Ẑ
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Approximate Posterior Model Probabilities

Then the integrated likelihood is:

P(Y , Ẑ |G ) =

∫
P(Y |Ẑ ,X , β)p(β)dβ ×

∫
P(Ẑ |θ)p(θ)dθ (∗)

= logistic regression factor×model-based clustering factor,

where θ = (µg , λg , σ2
g )Gg=1

We approximate both factors in (*) using the BIC approximation (in
generic form):

P(W ) =

∫
P(W |φ)P(φ)dφ ≈ P(W |φ̂)m−p/2,

where m = dim(W ) and p = dim(φ).
We thus approximate (twice the log) integrated likelihood by

BIC = BIClr + BICmbc

where

BIClr = 2 log P
(
Y |Ẑ ,X , β̂(Ẑ )

)
− dlogit log nlogit ,

and
BICmbc = 2 log P

(
Ẑ |θ̂(Ẑ )

)
− dmbc log n
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)
− dmbc log n



Approximate Posterior Model Probabilities
Then the integrated likelihood is:

P(Y , Ẑ |G ) =
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Y |Ẑ ,X , β̂(Ẑ )
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P(Y |Ẑ ,X , β)p(β)dβ ×

∫
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)
− dmbc log n



Approximate Posterior Model Probabilities
Then the integrated likelihood is:

P(Y , Ẑ |G ) =
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Ẑ |θ̂(Ẑ )
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)
− dlogit log nlogit ,

and
BICmbc = 2 log P

(
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Sampson’s Monks: Inference About Presence of Clustering
and Number of Groups

Strong evidence for clustering

because the one-group model has little support from the data

3 groups are strongly supported:

This is the number of groups “known” to be in the data
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Sampson’s Monks: Estimated Positions

Bayesian estimates of positions in latent social space shown

The “known” groups (as defined by White et al 1976) are shown by
letters (based on much more information than we use here):
Young Turks (T), Loyal opposition (L), Outcasts (O)

The groups identified by our method are the same as the “known”
groups

The probability of assignment of each monk to each latent cluster is
shown by a colored pie chart
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Young Turks (T), Loyal opposition (L), Outcasts (O)

The groups identified by our method are the same as the “known”
groups

The probability of assignment of each monk to each latent cluster is
shown by a colored pie chart
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How important at the random propensities?
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(a) without random effects (b) with receiver effects

Figure: For panel (b), the area of the pie chart is proportional to the
conditional odds ratio of a nomination for the monk due to his receiver effect
and the pie chart represents the proportions of the MCMC draws assigning
each monk to each cluster. The radii of the unfilled circles are equal to the
cluster standard deviations, σg , conditional on the MKL point estimates.



Add Health Data

Friendship network (Bearman et al 1997)

69 adolescents in grades 7–12 from one school

Each nominated up to 5 boys and 5 girls as their friends

Grade not taken into account in clustering
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model
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Add Health: Estimated Clusters

Latent clusters shown by color

Grades shown by number

Good (but not total) agreement between grades and groups
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Add Health: Uncertainty about Cluster Memberships
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Add Health: Uncertainty about Errant 11th grader
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Add Health: Unconstrained (with 2 isolates)
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Summary

Model-based clustering of latent positions for social networks
provides a formal model of social networks that incorporates
clustering

It permits inference about:

whether there is clustering
how many groups there are
who is in what group
uncertainty about group memberships
the actors’ latent social positions

It gave reasonable results for two examples

Software: The R package latentnet, available on CRAN

Some future work:

Account for degree distribution by including actor random effects
Extend to non-binary relations (count, continuous, duration)
Model cluster generating process
Longitudinal and dynamic models
Generalize to hypergraphs
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