Latent Space Models for Social Networks

Mark S. Handcock

Joint work with
UW Networks Working Group
Peter D. Hoff, University of Washington
Adrian E. Raftery, University of Washington Jeremy S. Tantrum, Microsoft AdCenter Labs

Example of Social Relationships between Monks

- Expressed "liking" between 18 monks within an isolated monastery \Rightarrow Sampson (1969)
- A directed relationship aggregated over a 12 month period before the breakup of the cloister.

Features of Many Social Networks

Features of Many Social Networks

- Mutuality of ties

Features of Many Social Networks

- Mutuality of ties
- Individual propensity to form ties varies by actor attributes
- Homophily by actor attributes
$\Rightarrow \quad$ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001
- higher propensity to form ties between actors with similar attributes e.g., age, gender, geography

Features of Many Social Networks

- Mutuality of ties
- Individual propensity to form ties varies by actor attributes
- Homophily by actor attributes
$\Rightarrow \quad$ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001
- higher propensity to form ties between actors with similar attributes e.g., age, gender, geography
- Transitivity of relationships
- friends of friends have a higher propensity to be friends

Clustering and Social Networks

Clustering and Social Networks

- Three types of clustering in social networks:
- transitivity of relationships
- homophily of actors with similar observed characteristics
- further clustering that could be due to:
- homophily on unobserved attributes, or
- "self-organization" into groups

Clustering and Social Networks

- Three types of clustering in social networks:
- transitivity of relationships
- homophily of actors with similar observed characteristics
- further clustering that could be due to:
- homophily on unobserved attributes, or
- "self-organization" into groups
- Drawing conclusions about clustering of social actors is often a focus of interest in social network analysis

Clustering and Social Networks

- Three types of clustering in social networks:
- transitivity of relationships
- homophily of actors with similar observed characteristics
- further clustering that could be due to:
- homophily on unobserved attributes, or
- "self-organization" into groups
- Drawing conclusions about clustering of social actors is often a focus of interest in social network analysis
- But most methods don't address it directly

Clustering and Social Networks

- Three types of clustering in social networks:
- transitivity of relationships
- homophily of actors with similar observed characteristics
- further clustering that could be due to:
- homophily on unobserved attributes, or
- "self-organization" into groups
- Drawing conclusions about clustering of social actors is often a focus of interest in social network analysis
- But most methods don't address it directly
- Instead conclusions about clustering are often drawn by informally eyeballing results from other methods

Clustering and Social Networks

- Three types of clustering in social networks:
- transitivity of relationships
- homophily of actors with similar observed characteristics
- further clustering that could be due to:
- homophily on unobserved attributes, or
- "self-organization" into groups
- Drawing conclusions about clustering of social actors is often a focus of interest in social network analysis
- But most methods don't address it directly
- Instead conclusions about clustering are often drawn by informally eyeballing results from other methods
- We present a statistical model of social networks that incorporates clustering and allows formal inference about:
- whether or not there is clustering (beyond transitivity)
- if so, how many groups there are
- who is in what group
- uncertainty about group memberships

Statistical Models for Social Networks

Notation

A social network is defined as a set of n social "actors" and a social relationship between each pair of actors.

Statistical Models for Social Networks

Notation

A social network is defined as a set of n social "actors" and a social relationship between each pair of actors.

$$
Y_{i j}= \begin{cases}1 & \text { relationship from actor } i \text { to actor } j \\ 0 & \text { otherwise }\end{cases}
$$

Statistical Models for Social Networks

Notation

A social network is defined as a set of n social "actors" and a social relationship between each pair of actors.

$$
Y_{i j}= \begin{cases}1 & \text { relationship from actor } i \text { to actor } j \\ 0 & \text { otherwise }\end{cases}
$$

- call $Y \equiv\left[Y_{i j}\right]_{n \times n}$ a sociomatrix
- a $N=n(n-1)$ binary array

Statistical Models for Social Networks

Notation

A social network is defined as a set of n social "actors" and a social relationship between each pair of actors.

$$
Y_{i j}= \begin{cases}1 & \text { relationship from actor } i \text { to actor } j \\ 0 & \text { otherwise }\end{cases}
$$

- call $Y \equiv\left[Y_{i j}\right]_{n \times n}$ a sociomatrix
- a $N=n(n-1)$ binary array
- The basic problem of stochastic modeling is to specify a distribution for Y i.e., $P(Y=y)$

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002) Hoff (2003, 2004 ,...)

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002) Hoff (2003, 2004 ,...)
- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002) Hoff (2003, 2004 ,...)
- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002) Hoff (2003, 2004 ,...)
- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties
- $\left\{\gamma_{i}\right\}$ individual propensity of the actors to receive ties

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002)

$$
\text { Hoff }(2003,2004, \ldots)
$$

- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties
- $\left\{\gamma_{i}\right\}$ individual propensity of the actors to receive ties
- $\left\{z_{i}\right\}$ be the positions of the actors in the social space \mathbf{R}^{k}

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002)

$$
\text { Hoff }(2003,2004, \ldots)
$$

- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties
- $\left\{\gamma_{i}\right\}$ individual propensity of the actors to receive ties
- $\left\{z_{i}\right\}$ be the positions of the actors in the social space \mathbf{R}^{k}
- $\left\{x_{i, j}\right\}$ denote observed characteristics that may be dyad-specific and vector-valued

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002)

$$
\text { Hoff }(2003,2004, \ldots)
$$

- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties
- $\left\{\gamma_{i}\right\}$ individual propensity of the actors to receive ties
- $\left\{z_{i}\right\}$ be the positions of the actors in the social space \mathbf{R}^{k}
- $\left\{x_{i, j}\right\}$ denote observed characteristics that may be dyad-specific and vector-valued

Positing Latent Social Structure via Random Effects

- model an underlying latent "social space" of actors
- Latent space models: Hoff, Raftery and Handcock (2002)

$$
\text { Hoff }(2003,2004, \ldots)
$$

- Hierarchical model for the network:
- Actors i and j are an unknown distance apart in social space
- Conditional on the distances the ties are independent

Let:

- $\left\{\delta_{i}\right\}$ individual propensity of the actors to form ties
- $\left\{\gamma_{i}\right\}$ individual propensity of the actors to receive ties
- $\left\{z_{i}\right\}$ be the positions of the actors in the social space \mathbf{R}^{k}
- $\left\{x_{i, j}\right\}$ denote observed characteristics that may be dyad-specific and vector-valued
Specifically:

$$
\log \operatorname{odds}\left(Y_{i j}=1 \mid z_{i}, z_{j}, x_{i j}, \beta\right)=\beta^{T} x_{i j}-\left|z_{i}-z_{j}\right|+\delta_{i}+\gamma_{j}
$$

where β denotes parameters to be estimated.

Model-based Clustering of Social Networks

Model-based Clustering of Social Networks

- Model the latent positions as clustered into G groups:

$$
z_{i} \stackrel{\text { i.i.d. }}{\sim} \sum_{g=1}^{G} \lambda_{g} \operatorname{MVN}_{d}\left(\mu_{g}, \sigma_{g}^{2} I_{d}\right)
$$

Model-based Clustering of Social Networks

- Model the latent positions as clustered into G groups:

$$
z_{i} \stackrel{\mathrm{i} . i . d .}{\sim} \sum_{g=1}^{G} \lambda_{g} \operatorname{MVN}_{d}\left(\mu_{g}, \sigma_{g}^{2} I_{d}\right)
$$

- Spherical covariance motivated by invariance

Model-based Clustering of Social Networks

- Model the latent positions as clustered into G groups:

$$
z_{i} \stackrel{\mathrm{i} . i . d .}{\sim} \sum_{g=1}^{G} \lambda_{g} \operatorname{MVN}_{d}\left(\mu_{g}, \sigma_{g}^{2} I_{d}\right)
$$

- Spherical covariance motivated by invariance
- captures position, transitivity, homophily on attributes, and clustering

Model-based Clustering of Social Networks

- Model the latent positions as clustered into G groups:

$$
z_{i} \stackrel{\mathrm{i} . i . d .}{\sim} \sum_{g=1}^{G} \lambda_{g} \mathrm{MVN}_{d}\left(\mu_{g}, \sigma_{g}^{2} I_{d}\right)
$$

- Spherical covariance motivated by invariance
- captures position, transitivity, homophily on attributes, and clustering
- captures individual propensities to form and receive ties

$$
\begin{array}{ll}
\delta_{i} & \stackrel{\text { i.i.d. }}{\sim} \\
\gamma_{i} & \mathrm{i}\left(0, \sigma_{\delta}^{2}\right) \quad i=1, \ldots, n, \\
\sim & N\left(0, \sigma_{\gamma}^{2}\right) \quad i=1, \ldots, n,
\end{array}
$$

Graphical Structure of the Model

Structure of the algorithm

Bayesian inference implemented via Markov Chain Monte Carlo (MCMC) Let K_{i} be the cluster of actor i.
Some full conditional posterior distributions are available:

$$
\begin{aligned}
& \sigma_{\delta}^{2} \mid \delta, \ldots \sim\left(\alpha_{\delta} \sigma_{0, \delta}^{2}+\sum_{i=1}^{n} \delta_{i}^{2}\right) \operatorname{lnv} \chi_{\alpha_{\delta}+n}^{2}, \\
& \sigma_{\gamma}^{2} \mid \gamma, \ldots \sim\left(\alpha_{\gamma} \sigma_{0, \gamma}^{2}+\sum_{i=1}^{n} \gamma_{i}^{2}\right) \operatorname{lnv} \chi_{\alpha_{\gamma}+n}^{2}, \\
& \mu_{g} \mid Z, K, \sigma_{g}^{2}, \ldots \stackrel{\text { ind }}{\sim} \mathrm{MVN}_{d}\left(\frac{n_{g} \bar{Z}_{g}}{n_{g}+\sigma_{g}^{2} / \omega^{2}}, \frac{\sigma_{g}^{2}}{n_{g}+\sigma_{g}^{2} / \omega^{2}}\right), \\
& \sigma_{g}^{2} \mid Z, K, \mu_{g}, \ldots \stackrel{\text { ind }}{\sim} \\
& \lambda \mid K, \ldots \sim\left(\alpha_{Z} \sigma_{Z, 0}^{2}+S S_{Z_{g}}\right) \operatorname{lnv} \chi_{\alpha_{Z}+n_{g} d}^{2}, \\
& \operatorname{Dirichlet}\left(\nu_{1}+n_{1}, \ldots, \nu_{G}+n_{G}\right), \\
& \operatorname{Pr}\left(K_{i}=g \mid \lambda, Z, \mu_{g}, \sigma_{g}^{2}, \ldots\right) \stackrel{\text { ind }}{=} \frac{\lambda_{g} f_{\mathrm{MVN}_{d}\left(\mu_{g}, \sigma_{g}^{2} l_{d}\right)}\left(Z_{i}\right)}{\sum_{k=1}^{G} \lambda_{k} f_{\mathrm{MVN}_{d}\left(\mu_{k}, \sigma_{k}^{2} l_{d}\right)}\left(Z_{i}\right)} \quad i=1, \ldots, n,
\end{aligned}
$$

where

$$
\begin{gathered}
S S_{Z_{g}}=\sum_{i=1}^{n} 1_{K_{i}=g}\left(Z_{i}-\mu_{g}\right)^{T}\left(Z_{i}-\mu_{g}\right) \\
n_{g}=\sum_{i=1}^{n} 1_{K_{i}=g}
\end{gathered}
$$

and $\phi_{d}(\cdot ; \mu, \Sigma)$ is the d-dimensional multivariate normal density.

Algorithmic details

Our algorithm is then as follows:
(1) Use Metropolis-Hastings to sample Z_{t+1}, updating each actor in random order:
(1) Propose $Z_{i}^{*} \sim \operatorname{MVN}_{d}\left(Z_{t i}, \delta_{Z}^{2} I_{d}\right)$.
(2) With probability equal to

$$
\frac{P\left(Y \mid Z^{*}, X, \beta_{t}\right) \phi_{d}\left(Z_{i}^{*} ; \mu_{K_{i}}, \sigma_{K_{i}}^{2} I_{d}\right)}{P\left(Y \mid Z_{t}, X, \beta_{t}\right) \phi_{d}\left(Z_{i t} ; \mu_{K_{i}}, \sigma_{K_{i}}^{2} I_{d}\right)}
$$

set the i th element of Z_{t+1} to Z_{i}^{*}. Otherwise set it to $Z_{i t}$.
(2) Use Metropolis-Hastings to sample β_{t+1} :
(1) Propose $\beta^{*} \sim \operatorname{MVN}_{d}\left(\beta_{t}, \delta_{\beta}^{2} I_{p}\right)$.
(2) With probability equal to

$$
\frac{P\left(Y \mid Z_{t+1}, X, \beta^{*}\right) \phi_{p}\left(\beta^{*} ; \xi, \Psi\right)}{P\left(Y \mid Z_{t+1}, X, \beta_{t}\right) \phi_{p}\left(\beta_{t} ; \xi, \Psi\right)}
$$

set $\beta_{t+1}=\beta^{*}$. Otherwise set $\beta_{t+1}=\beta_{t}$.
(3) Update, $K_{i}, \mu_{g}, \sigma_{g}^{2}$ and λ_{g} from (3), (4), (5) and (6).

Estimation

Estimation

Two-Stage Maximum Likelihood Estimation

Estimation

Two-Stage Maximum Likelihood Estimation
(1) Find the MLE of the latent positions via (unclustered) latent space model
\Rightarrow Hoff, Raftery, Handcock (2002)

Estimation

Two-Stage Maximum Likelihood Estimation
(1) Find the MLE of the latent positions via (unclustered) latent space model
\Rightarrow Hoff, Raftery, Handcock (2002)
(2) Apply model-based clustering conditional on estimated latent positions

Estimation

Two-Stage Maximum Likelihood Estimation

(1) Find the MLE of the latent positions via (unclustered) latent space model
\Rightarrow Hoff, Raftery, Handcock (2002)
(2) Apply model-based clustering conditional on estimated latent positions

- Use EM as in the R package mclust (Fraley and Raftery 1998)

Estimation

Two-Stage Maximum Likelihood Estimation

(1) Find the MLE of the latent positions via (unclustered) latent space model
\Rightarrow Hoff, Raftery, Handcock (2002)
(2) Apply model-based clustering conditional on estimated latent positions

- Use EM as in the R package mclust (Fraley and Raftery 1998)
- fast and simple
- cluster structure not used to estimate positions

Estimation

Two-Stage Maximum Likelihood Estimation

(1) Find the MLE of the latent positions via (unclustered) latent space model
\Rightarrow Hoff, Raftery, Handcock (2002)
(2) Apply model-based clustering conditional on estimated latent positions

- Use EM as in the R package mclust (Fraley and Raftery 1998)
- fast and simple
- cluster structure not used to estimate positions

Bayesian Estimation

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
& \beta \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
& \lambda \sim \operatorname{Dirichlet}(\nu), \\
& \sigma_{\delta}^{2} \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
& \sigma_{\gamma}^{2} \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
& \sigma_{g}^{2} \stackrel{\text { i.i.d. }}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
& \mu_{g} \stackrel{\text { i.i.d. }}{\sim} \\
& \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
& \beta \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
& \lambda \sim \operatorname{Dirichlet}(\nu), \\
& \sigma_{\delta}^{2} \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
& \sigma_{\gamma}^{2} \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
& \sigma_{g}^{2} \stackrel{\text { i.i.d. }}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
& \mu_{g} \stackrel{\text { i.i.d. }}{\sim} \\
& \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{\text { i.i.d. }}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} I_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:

$$
\text { - } \nu_{g}=3 \quad \text { (low probability of small groups) }
$$

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{i . i . d^{2}}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:

$$
\begin{array}{ll}
\text { - } \nu_{g}=3 & \text { (low probability of small groups) } \\
\text { - } \xi=0 \text { and } \psi=21 & \text { (allows a wide range of values of } \beta \text {) }
\end{array}
$$

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{i . i . d^{2}}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:
- $\nu_{g}=3$
- $\xi=0$ and $\Psi=21 \quad$ (allows a wide range of values of β)
- $\alpha=2$ and $\sigma_{0}^{2}=0.103$ (within-group variation can be small)

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{\delta}}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{i . i . d^{2}}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:
- $\nu_{g}=3$
- $\xi=0$ and $\Psi=2 l$
- $\alpha=2$ and $\sigma_{0}^{2}=0.103$ (within-group variation can be small)
- $\omega^{2}=2$
(low probability of small groups)
(allows a wide range of values of β)
(prior density of the means is relatively flat)

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi_{\alpha_{\delta}}^{2}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{\text { i.i.d. }}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} l_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:
- $\nu_{g}=3$
- $\xi=0$ and $\Psi=21$
- $\alpha=2$ and $\sigma_{0}^{2}=0.103$ (within-group variation can be small)
- $\omega^{2}=2$
(low probability of small groups)
(allows a wide range of values of β)
(prior density of the means is relatively flat)

Bayesian Estimation

We use the following prior distributions:

$$
\begin{aligned}
\beta & \sim \operatorname{MVN}_{p}(\xi, \Psi), \\
\lambda & \sim \operatorname{Dirichlet}(\nu), \\
\sigma_{\delta}^{2} & \sim \alpha_{\delta} \sigma_{0, \delta}^{2} \operatorname{lnv} \chi_{\alpha_{\delta}}^{2}, \\
\sigma_{\gamma}^{2} & \sim \alpha_{\gamma} \sigma_{0, \gamma}^{2} \operatorname{lnv} \chi_{\alpha_{\gamma}}^{2}, \\
\sigma_{g}^{2} & \stackrel{\text { i.i.d. }}{\sim} \alpha_{Z} \sigma_{0, Z}^{2} \operatorname{lnv} \chi^{2}{ }_{\alpha_{Z}} \quad g=1, \ldots, G, \\
\mu_{g} & \stackrel{\text { i.i.d. }}{\sim} \operatorname{MVN}_{d}\left(0, \omega^{2} I_{d}\right), \quad g=1 \ldots G,
\end{aligned}
$$

where $\xi, \Psi, \nu=\left(\nu_{1}, \ldots, \nu_{G}\right), \sigma_{0, Z}^{2}, \alpha_{Z}, \sigma_{0, \delta}^{2}, \alpha_{\delta}, \sigma_{0, \gamma}^{2}, \alpha_{\gamma}$, and ω^{2} are hyperparameters.

- We set:
- $\nu_{g}=3$
- $\xi=0$ and $\psi=2$ l
- $\alpha=2$ and $\sigma_{0}^{2}=0.103$ (within-group variation can be small)
- $\omega^{2}=2 \quad$ (prior density of the means is relatively flat)
- Posterior distribution approximated by Markov chain Monte Carlo

Identifiability of Positions and Cluster Labels

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters Resolve nonidentifiabilities by postprocessing the MCMC output.

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters Resolve nonidentifiabilities by postprocessing the MCMC output.
- First, Procrustes transform the actor positions and the cluster means and covariances.

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters Resolve nonidentifiabilities by postprocessing the MCMC output.
- First, Procrustes transform the actor positions and the cluster means and covariances.

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters Resolve nonidentifiabilities by postprocessing the MCMC output.
- First, Procrustes transform the actor positions and the cluster means and covariances.

Idea
Choose the configuration that minimizes the Kullback-Leibler divergence from the "true" distributions.

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters

Resolve nonidentifiabilities by postprocessing the MCMC output.

- First, Procrustes transform the actor positions and the cluster means and covariances.

Idea
Choose the configuration that minimizes the Kullback-Leibler divergence from the "true" distributions.
(1) Find the minimum Kullback-Leibler positions of the actors relative to $P(Y \mid Z, X, \beta)$.

Identifiability of Positions and Cluster Labels

- The likelihood is a function of the latent positions only through their distances
- The likelihood is also invariant to relabelling of the clusters

Resolve nonidentifiabilities by postprocessing the MCMC output.

- First, Procrustes transform the actor positions and the cluster means and covariances.

Idea

Choose the configuration that minimizes the Kullback-Leibler divergence from the "true" distributions.
(1) Find the minimum Kullback-Leibler positions of the actors relative to $P(Y \mid Z, X, \beta)$.
(2) Find the minimum Kullback-Leibler cluster membership probabilities over all label permutations.

Choosing the Number of Groups

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}
- integrating over the other parameters

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}
- integrating over the other parameters
- Justification:

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}
- integrating over the other parameters
- Justification:
- Evaluates the specific latent positions that will be used

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}
- integrating over the other parameters
- Justification:
- Evaluates the specific latent positions that will be used
- Worked well in a similar model: model-based clustering with dissimilarities (Oh \& Raftery 2003)

Choosing the Number of Groups

- We recast the choice of number of groups as a model selection problem: Each number of groups is viewed as a different statistical model.
- Bayesian model selection (approximated by a version of BIC) determines the number of groups
- If the preferred number of groups is 1 , there is no evidence for clustering
- We use conditional posterior model probabilities:
- conditioning on an estimate of the latent positions, \hat{Z}
- integrating over the other parameters
- Justification:
- Evaluates the specific latent positions that will be used
- Worked well in a similar model: model-based clustering with dissimilarities (Oh \& Raftery 2003)
- Simplifies calculations

Approximate Posterior Model Probabilities

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
\begin{equation*}
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \tag{*}
\end{equation*}
$$

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \quad(*)
$$

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \quad(*)
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \quad(*)
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in $\left(^{*}\right.$) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2},
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
\begin{equation*}
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \tag{*}
\end{equation*}
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in (*) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2}
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

- We thus approximate (twice the log) integrated likelihood by

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
\begin{equation*}
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \tag{*}
\end{equation*}
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in (*) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2}
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

- We thus approximate (twice the log) integrated likelihood by

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
\begin{equation*}
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \tag{*}
\end{equation*}
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in (*) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2}
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

- We thus approximate (twice the log) integrated likelihood by

$$
\mathrm{BIC}=\mathrm{BIC}_{l r}+\mathrm{BIC}_{m b c}
$$

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \quad(*)
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in (*) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2}
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

- We thus approximate (twice the log) integrated likelihood by

$$
\mathrm{BIC}=\mathrm{BIC}_{I r}+\mathrm{BIC}_{m b c}
$$

where

$$
\mathrm{BIC}_{l r}=2 \log P(Y \mid \hat{Z}, X, \hat{\beta}(\hat{Z}))-d_{\text {logit }} \log n_{\text {logit }},
$$

Approximate Posterior Model Probabilities

- Then the integrated likelihood is:

$$
P(Y, \hat{Z} \mid G)=\int P(Y \mid \hat{Z}, X, \beta) p(\beta) d \beta \times \int P(\hat{Z} \mid \theta) p(\theta) d \theta \quad(*)
$$

$=$ logistic regression factor \times model-based clustering factor, where $\theta=\left(\mu_{g}, \lambda_{g}, \sigma_{g}^{2}\right)_{g=1}^{G}$

- We approximate both factors in (*) using the BIC approximation (in generic form):

$$
P(W)=\int P(W \mid \phi) P(\phi) d \phi \approx P(W \mid \hat{\phi}) m^{-p / 2}
$$

where $m=\operatorname{dim}(W)$ and $p=\operatorname{dim}(\phi)$.

- We thus approximate (twice the log) integrated likelihood by

$$
\mathrm{BIC}=\mathrm{BIC}_{I r}+\mathrm{BIC}_{m b c}
$$

where

$$
\mathrm{BIC}_{l r}=2 \log P(Y \mid \hat{Z}, X, \hat{\beta}(\hat{Z}))-d_{\text {logit }} \log n_{\text {logit }},
$$

and

$$
\mathrm{BIC}_{m b c}=2 \log P(\hat{Z} \mid \hat{\theta}(\hat{Z}))-d_{m b c} \log n
$$

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

- Strong evidence for clustering

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

- Strong evidence for clustering
- because the one-group model has little support from the data

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

- Strong evidence for clustering
- because the one-group model has little support from the data
- 3 groups are strongly supported:

Sampson's Monks: Inference About Presence of Clustering and Number of Groups

- Strong evidence for clustering
- because the one-group model has little support from the data
- 3 groups are strongly supported:
- This is the number of groups "known" to be in the data

Sampson's Monks: Estimated Positions

Sampson's Monks: Estimated Positions

Sampson's Monks: Estimated Positions

- Bayesian estimates of positions in latent social space shown

Sampson's Monks: Estimated Positions

- Bayesian estimates of positions in latent social space shown
- The "known" groups (as defined by White et al 1976) are shown by letters (based on much more information than we use here):
Young Turks (T), Loyal opposition (L), Outcasts (O)

Sampson's Monks: Estimated Positions

- Bayesian estimates of positions in latent social space shown
- The "known" groups (as defined by White et al 1976) are shown by letters (based on much more information than we use here): Young Turks (T), Loyal opposition (L), Outcasts (O)
- The groups identified by our method are the same as the "known" groups

Sampson's Monks: Estimated Positions

- Bayesian estimates of positions in latent social space shown
- The "known" groups (as defined by White et al 1976) are shown by letters (based on much more information than we use here): Young Turks (T), Loyal opposition (L), Outcasts (O)
- The groups identified by our method are the same as the "known" groups
- The probability of assignment of each monk to each latent cluster is shown by a colored pie chart

How important at the random propensities?

(a) without random effects

(b) with receiver effects

Figure: For panel (b), the area of the pie chart is proportional to the conditional odds ratio of a nomination for the monk due to his receiver effect and the pie chart represents the proportions of the MCMC draws assigning each monk to each cluster. The radii of the unfilled circles are equal to the cluster standard deviations, σ_{ρ}, conditional on the MKE point estimates.

Add Health Data

Add Health Data

- Friendship network (Bearman et al 1997)

Add Health Data

- Friendship network (Bearman et al 1997)
- 69 adolescents in grades 7-12 from one school

Add Health Data

- Friendship network (Bearman et al 1997)
- 69 adolescents in grades 7-12 from one school
- Each nominated up to 5 boys and 5 girls as their friends

Add Health Data

- Friendship network (Bearman et al 1997)
- 69 adolescents in grades 7-12 from one school
- Each nominated up to 5 boys and 5 girls as their friends
- Grade not taken into account in clustering

Add Health: Inference About Number of Groups

Add Health: Inference About Number of Groups

Add Health: Inference About Number of Groups

- Clear evidence for clustering, because little evidence for one-group model

Add Health: Inference About Number of Groups

- Clear evidence for clustering, because little evidence for one-group model
- 6 groups chosen by BIC

Add Health: Inference About Number of Groups

- Clear evidence for clustering, because little evidence for one-group model
- 6 groups chosen by BIC
- The same number of groups as of grades

Add Health: Estimated Clusters

Add Health: Estimated Clusters

Add Health: Estimated Clusters

- Latent clusters shown by color

Add Health: Estimated Clusters

- Latent clusters shown by color
- Grades shown by number

Add Health: Estimated Clusters

- Latent clusters shown by color
- Grades shown by number
- Good (but not total) agreement between grades and groups

Add Health: Uncertainty about Cluster Memberships

Add Health: Uncertainty about Cluster Memberships

Add Health: Uncertainty about Errant 11th grader

Add Health: Unconstrained (with 2 isolates)
ah.lc $\sim \operatorname{latent}(d=2, G=6)$

Summary

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:
- Account for degree distribution by including actor random effects

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:
- Account for degree distribution by including actor random effects
- Extend to non-binary relations (count, continuous, duration)

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:
- Account for degree distribution by including actor random effects
- Extend to non-binary relations (count, continuous, duration)
- Model cluster generating process

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:
- Account for degree distribution by including actor random effects
- Extend to non-binary relations (count, continuous, duration)
- Model cluster generating process
- Longitudinal and dynamic models

Summary

- Model-based clustering of latent positions for social networks provides a formal model of social networks that incorporates clustering
- It permits inference about:
- whether there is clustering
- how many groups there are
- who is in what group
- uncertainty about group memberships
- the actors' latent social positions
- It gave reasonable results for two examples
- Software: The R package latentnet, available on CRAN
- Some future work:
- Account for degree distribution by including actor random effects
- Extend to non-binary relations (count, continuous, duration)
- Model cluster generating process
- Longitudinal and dynamic models
- Generalize to hypergraphs

