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Reminder: The Model Class

Exponential-Family Random Graph Model (ERGM)

Pθ(Y = y) ∝ exp{θtg(y)} for all y ∈ Y.

or

Pθ(Y = y) =
exp{θtg(y)}

κ(θ)
,

where
Y is a random network on n nodes (a matrix of 0’s and 1’s)
θ ∈ Rp is a vector of parameters
g : Y → Rp is given: g(y) are the graph statistics
κ(θ) makes all the probabilities sum to 1
Y is fairly restrictive for now (e.g., node set is fixed)
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The goal of estimation

Exponential-family Random Graph Model (ERGM)

Pθ(Y = y) =
exp{θtg(y)}

κ(θ)
for all y ∈ Y.

If θ is not known, the above equation defines a model class, not
a model.

Goal:

Use observed data (a network yobs) to determine the “best”
model from the model class.

In other words, find the “best” θ.
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The likelihood function
The model class:

Pθ(Y = y) =
exp{θtg(y)}

κ(θ)

It follows that κ(θ) is a normalizing “constant”:

κ(θ) =
∑

all possible
graphs z

exp{θtg(z)}.

Let yobs denote the observed graph, i.e., the data.
Likelihood function: View Pθ(Y = yobs) as function of θ
Goal: Find θ̂ that maximizes log of likelihood

`(θ) = θtg(yobs)− logκ(θ).

Result: The maximum likelihood estimate.
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More on MLE: Challenges

The fact that Pθ̂(Y = yobs) is as large as possible in this model
class does NOT mean that yobs is particularly likely relative to
other networks!
(The model class itself might be inappropriate. We call this
degeneracy.)

`(θ) = θtg(yobs) is in general incredibly difficult to evaluate, let
alone maximize:
Evaluating κ(θ) directly involves 2(n

2) summands.
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A nifty fact regarding the MLE θ̂

Because we’re dealing with an exponential family of
models,

E θ̂ g(Y ) = g(yobs)

and no other value of θ has this property.
In words:

The MLE gives the unique model in the model
class under which the mean value of the vector of
statistics equals its observed value.

This fact may even be exploited to approximate θ̂.
(See Snijders 2002, J. of Social Structure. Idea is to use a
Robbins-Monro-like algorithm.)
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Different approach: Approximate log-likelihood ratio

Suppose we fix θ0. A bit of algebra shows that

`(θ)− `(θ0) = (θ − θ0)tg(yobs)− log E θ0

[
exp

{
(θ − θ0)tg(Y )

}]
.

Thus, `(θ)− `(θ0) involves a mean, which may be
approximated by a sample mean:

`(θ)− `(θ0) ≈ (θ − θ0)tg(yobs)− log
1
m

m∑
i=1

exp
{

(θ − θ0)tg(Yi)
}
,

where Y1,Y2, . . . ,Ym is a random sample of networks from
the distribution defined by the ERGM with parameter θ0.
So simulating random networks enables approximate MLE.
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Challenge: Approximation of LLR is very hard

← from working paper of
Ruth Hummel, PSU student
supported by MURI grant this
semester.

Naive approximation of LLR not good far from θ0, even for
gigantic samples
Possible remedies: Smarter approximation; keeping close
to θ0; exploiting other existing techniques for ratios of
normalizing constants
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How should θ0 be chosen?

Theoretically, the estimated value of `(θ)− `(θ0) converges
to the true value as the size of the MCMC sample
increases, regardless of the value of θ0.
(Challenge: Building better MCMC routines — and
parallelization — will always help.)

However, in practice this convergence can be agonizingly
slow, especially if θ0 is not chosen close to the maximizer
of the likelihood.
A choice that sometimes works is the MPLE (maximum
pseudolikelihood estimate).
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MPLE background: Conditional log-odds of edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0
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ij , Y has only two possible states,
depending on whether Yij = 0 or Yij = 1.
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Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

Conditional on Y c
ij = yc

ij , Y has only two possible states,
depending on whether Yij = 0 or Yij = 1.
Let’s calculate the ratio of the two respective probabilities.

[We’ll use Pθ(Y = y) = exp{θtg(y)}/κ(θ).]
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MPLE background: Conditional log-odds of edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

P(Yij = 1|Y c
ij = yc

ij )

P(Yij = 0|Y c
ij = yc

ij )
=

exp{θtg(y+
ij )}

exp{θtg(y−ij )}

A lot of cancellation happened on the right hand side!
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MPLE background: Conditional log-odds of edge

Notation: For a network y and a pair (i , j) of nodes,

yij = 0 or 1, depending on whether there is an edge
yc

ij denotes the status of all pairs in y other than (i , j)

y+
ij denotes the same network as y but with yij = 1

y−ij denotes the same network as y but with yij = 0

log
P(Yij = 1|Y c

ij = yc
ij )

P(Yij = 0|Y c
ij = yc

ij )
= θt [g(y+

ij )− g(y−ij )]
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MPLE background: Conditional log-odds of edge

Notation: For a network y and a pair (i , j) of nodes,

∆g(y)ij denotes the vector of change statistics,

∆g(y)ij = g(y+
ij )− g(y−ij ).

So ∆g(y)ij is the conditional log-odds of edge (i , j).

log
P(Yij = 1|Y c

ij = yc
ij )

P(Yij = 0|Y c
ij = yc

ij )
= θt ∆g(y)ij

NB: The change statistics ∆g(y)ij are integral to both MCMC
and MPLE.
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MPLE: Intuition

Assume that there is no dependence among the Yij .
In other words, assume the marginal P(Yij = 1) and the
conditional P(Yij = 1|Y c

ij = yc
ij ) coincide.

Then the Yij are independent with

log
P(Yij = 1)

P(Yij = 0)
= θt ∆g(yobs)ij ,

so we obtain an estimate of θ using straightforward logistic
regression.
Result: The maximum pseudolikelihood estimate.
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MPLE warnings & challenges

Unfortunately, little is known about the quality of MPL estimates
in general, but they can be very bad (cf. van Duijn et al, 2008).

If the model is bad, you’ll get MPLE results quite easily
(unlike MLE results), masking the problem.
If the model is good, in many cases the MPLE looks “close”
to the MLE; however, “close” can be deceiving, since small
changes in θ can sometimes lead to large differences in
the behavior of randomly generated networks.

Nevertheless, if MPLE must be found...
For large networks, MPLE can be computationally
burdensome: There are

(n
2

)
“observations” in a linear

regression model.
MPLE via change statistics requires a network yobs; yet the
model depends on y only through g(y) so what if we have
only g(yobs)? One answer: Find a network whose statistics
are equal to g(yobs).
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Curved Exponential Families

Degree distributions get a lot of attention. For a network on
(say) n = 100 nodes, denoted by Y , we posit an ERGM in
which

Pη(Y = y) ∝ η0E(y) + η1D1(y) + · · ·+ η99D99(y),

where Di(y) = # nodes of degree i .
Death by parameter!

More parsimonious model: For 1 ≤ i ≤ 99, let

ηi(θ, α) = θeα
[
1− (1− e−α)i

]
.

ηi is nonlinear in α (hence curved EF model)
Challenge: Maximizing MLE is even harder here and
requires a lot of storage.
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