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Approximate Spherical Range Searching

Example: Count (or report) the points lying within a given
spherical range. Allow an error of €.

Preprocessing: Build BBD tree. /17 """""""""""""
Query Processing: I 3' 2
@ Find maximal cells lying within 1 ‘e 0o
the outer range and covering the |  § | 2 +
inner range 3 JRD .
@ Access counts for each cell Jl]g :5 2°
@ Return the total \1\ s

Query time: O(log n+ (1/€)971).
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A randomized structure for 1-dimensional
data. Build linked lists for successive
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Dynamic (Balanced) Structures

How to support insertion and deletion?

Analogy — Skiplist [Pug90]

A randomized structure for 1-dimensional
data. Build linked lists for successive
random samples.
@ Syp < S (the original point set).
@ S; « sample Sy with probability

NI= N|=

@ S, «+ sample S; with probability

@ The process ends after O(log n) stages
in expectation.
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Skip Quadtree [EGS05]

Same idea, but applied to a sequence of compressed quadtrees.

@ (o < quadtree for Sp.
@ (1 < quadtree for S;.
@ ( < quadtree for S,.
@ ... Each node of Q; is linked to its counterpart in Q;_1.

Although each quadtree may be unbalanced (like a linked list) it is
possible to access each node in O(log n) time through the links.
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Kinetic Structures

Latent embedding algorithms involve adjusting the location many
points with each iteration. The motion of each point may be small.

Kinetic Updates

Update a data structure after a small motion involving many
points of the set.

@ Data structures that are defined in terms of a fixed coordinate
frame are sensitive to changes in absolute position of points,
even if the relative position remains unchanged.

@ Can we define spatial data structures that are independent of
any coordinate frame?
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...is a subset X C S such that

(i) every point of S is within distance o« ° .
r of some point of X . o, °
(ii) the pairwise distance between any * ¢
two points of X is > r o ® .
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...is a subset X C S such that JS— JEp——
(i) every point of S is within distance e % K

r of some point of X e N e i

(ii) the pairwise distance between any RN LY o

two points of X is > r |

The balls of radius r form a cover,

which is similar to the partition provided

by the square cells of one level of a

quadtree.
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Net Tree [CG06, GGNO4, HMO06]
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The leaves are Sg = S.

Let r be the minimum distance
between any two points of S.

Let S; be an r-net of Sp.
Let Sy be a (2r)-net of S;.
Let S; be a (2/r)-net of S;_1.

Until only one remains — the root.

Similar to the quadtree in spirit, but
intrinsic to the point set.
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intrinsic to the point set.

s 1
. .
, BYTNS
R CNRCLLEEN
. K4 .
/
H ot LY
o===~e, 11 '
o CRUICIEE NS LIy
N s 1) Rl >
N R LS en
Ly ’
[y ! Saade ° 1
’ . y
Ay ’
oo Ne K4 4
- AL te . x
K " Raacs g
/ \ K .
H ° 1 4 \
s / H i
\ an=
N e TR
15 Q2 ’
QAL LD LAY o/
Y Ry J o
4 \ S
/ o o ( S
H i /
\
H * o %
‘\ LA -"
\ -
".--—"



Kinetic Structures
ooe

Kinetic Structures

Net Tree

Net Tree [CG06, GGNO4, HMO06]
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Challenges

Depth vs. Breadth: Most innovations have focused on maintaining
structures of low depth. However, search times are dominated
by the search’s breadth, that is, the number of cells visited.

Tight vs. Slack: The best static structures achieve efficiency by
enforcing tight constraints on subdivision properties (e.g. tree
depth, cell size, aspect ratio). However, tight constraints result
in frequent certificate failures, as used by kinetic structures.

The Right Mixture: What is the proper mixture of methods to
achieve best overall performance, in terms of accuracy and
execution times?
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