
Retroactive Data Structures
Michael T. Goodrich, Joseph A. Simons

Department of Computer Science, University of California, Irvine

Motivation

We may need to alter the historical sequence of transactions.

•Dynamization. Some static algorithms require a dynamic data
structure to process the input. These algorithms can be made
dynamic by using a retroactive data structure instead.

•Bad Data. Data is either missing, was entered incorrectly, or
comes from a tainted source (e.g. a sensor has malfunctioned).

•Efficient Adaptation.
We may want to undo an error
made early on without redoing all
the work since then.

Goal: Maintain a large amount of data which changes over time such
that we can efficiently update and query the data. Support updates
and queries on current and past versions of the data structure.

Definition

A data structure is fully retroactive if it supports queries and up-
dates to current and past versions.

Insert

Delete

Time

Query and/or Update at any point in time.

Persistent data structures also maintain past versions, but only retroac-
tive data structures propigate updates forward in the timeline.

1

2

3

1

2

3

Insert into version 1

Persistent

1

2

3

1.1

Retroactive

Version Data Structure

1b

Figure: All later versions reflect the update in a fully retroactive data structure.

General Approach

Segment tree over time

non-retroactive

data structures

d-dimensions

line segments in

d+ 1 dimensions

2

3

5

7

9

13

17

19 Value

Time

20

10

t
Range(4,18) Range(4,18) at time t

Normal Query Retroactive Query

Figure: Illustrating the conversion to a fully retroactive query.

Avoiding extra O(log n) overhead:
•Build high-degree segment tree over segments.
•Augment root with traditional data structure.
•Augment nodes with CDFC structures.

Original DS

CDFC

· · ·

· · · · · ·

Segment Tree

y0 z0

y1 z1

y2 z2

CDFC

CDFC

Search path for t

Retroactive Query

Query at time t:
•Search for t in segment tree.
•non-retroactive query at root.
• fractional cascading in each CDFC.

Approximate Range Searching

Always Counted

Never Counted

Counted?

Q−

Q+

ε · d(Q)

• Input: set of points in Rd.
•Updates can insert or delete
points at any time.

•Query: return points in
approximate range at time t.

Figure: Points within Q− must be returned. Points outside Q+ are never returned.
Points between Q− and Q+ may or may not be returned.

Inner

Outer

Stabbing

Recursively
search
stabbing
squares

Query:

For each Inner Square:
•Reduce to 1-d query using Z-order
•Perform 1-d query in augmented segment tree

y0 z0

Figure: Z-order curve projects quadtree down to one dimension.

[1] M. T. Goodrich and J. A. Simons. Fully retroactive approximate range and nearest neighbor searching. Algorithms
and Computation, pp. 292–301. Springer, Lecture Notes in Computer Science 7074, 2011.

Supported by: Office of Naval Research award N00014-08-1-1015.


