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Simulating large networks and learning the structure of large
networks is based on models. Some models of large networks
are viable, others are not.
Problem:
•Dependent data, such as relational data, spatial data, and

temporal data, show evidence of local dependence.
• Spatial and temporal data come with natural structure—

space and time, respectively—which facilitates the construc-
tion of viable models with local dependence.
•Network data tend to come without natural structure, which

impedes the construction of viable models with local depen-
dence.
•Attempts to construct viable models with local dependence

based on Markov dependence (Frank and Strauss 1986) have
by and large failed.

Contributions:
•Models with Markov dependence are more global than local

in nature.
•Models with global dependence are non-viable and impede

simulation and learning.
• Introduce hierarchical models with latent, local structure and

local dependence.
•Demonstrate that hierarchical models with local dependence

are superior to models with global dependence.

Motivation

Consider random graph Y on n nodes, where Yij denotes ran-
dom edge between nodes i and j.

Neighbors: {i, j} and {k, l} are neighbors if {i, j} and {k, l}
share nodes.

Markov dependence: If {i, j} and {k, l} are not neighbors, then
Yij and Ykl are independent conditional on the rest of random
graph Y.

PMF of random graph Y:

Pθ(Y = y) = exp [〈θ, s(y)〉 − ψ(θ)]
where
• 〈θ, s(y)〉〉: inner product of vector of natural parameters θ and

vector of sufficient statistics s(y) given by number of edges, k-
stars, and triangles.
• ψ(θ): log partition function.

Model with Markov dependence

Global dependence: Models with Markov dependence, despite
the underlying nearest neighbor assumption, are more global
than local in nature in the sense that every random variable in-
teracts with a large and growing number of other random vari-
ables.

Implications of global dependence:
•Depending on θ, either very weak dependence or very strong

dependence, but nothing in between.
• Subset of viable parameter values θ negligible.
•Obstacle to simulation and learning.

Details:
• Schweinberger and Handcock (2011) funded by .

• Schweinberger (2011) funded by .

• Butts (2011) funded by .

Models with global dependence

•Models need additional restrictions on interaction of random
variables (Strauss and Ikeda 1990, Jonasson 1999, Häggström
and Jonasson 1999).
•One of the most attractive approaches to restrict interaction of

random variables is based on latent, local structure:
(a) Networks tend to be sparse and thus show evidence of lo-

cal rather than global interaction. If relevant local structure
is not observed, it makes sense to augment the observed
graph by latent, local structure.

(b) Models with latent, local structure give scientists the free-
dom to include interactions of interest. At the same time,
by restricting interactions to local neighborhoods along
the lines of the two-dimensional Ising model with nearest
neighbor interactions, dependence is local.

Lessons: importance of local dependence

Assumption 1: latent, local structure. The set of nodes N is partitioned into K
subsets N1, . . . ,NK :

Xi | π1, . . . , πK
iid∼Multinomial(1; π1, . . . , πK), i = 1, . . . , n.2

Assumption 2: local dyad-dependence, global dyad-independence. The con-
ditional PMF of random graph Y given local structure X can be factorized into
within- and between-block PMFs:

Pθ(Y = y | X = x) =
∏
k

Pθ(Y(kk) = y(kk) | X = x)

×
∏
k<l

Pθ(Y(kl) = y(kl) | X = x)

where between-block PMFs are assumed to be factorizable:
Pθ(Y(kl) = y(kl) | X = x) =

∏
i<j, i∈Nk, j∈Nl

Pθ(Yij = yij | X = x)

while within-block PMFs are not assumed to be factorizable.2

Example: directed graphs:

Pθ(Y(kl) = y(kl) |X = x) = exp
[
〈θB, sB(y(kl))〉 − ψB(θ)

]
where sB(y(kl)): number of edges and mutual edges between blocks k and l,

Pθ(Y(kk) = y(kk) |X = x) = exp
[
〈θW,k, sW,k(y(kk))〉 − ψW,k(θ)

]
where sW,k(y(kk)): number of edges, mutual edges, and transitive triples
within block k.

Choice of interactions is unrestricted as long as dependence is local.

Hierarchical models with local dependence

Choose large number of blocks K depending on number of nodes n.

Stick-breaking prior distribution:

Vk |α
iid∼Beta(1, α), k = 1, . . . , K − 1

VK = 1

π1 = V1

πk = Vk

k−1∏
j=1

(1− Vj), k = 2, . . . , K

θB |µB,Σ−1B ∼MVN(µB,Σ
−1
B )

θW,k |µW ,Σ−1W
iid∼MVN(µW ,Σ

−1
W ), k = 1, . . . , K.

Hyper-prior distribution: α, µW , and Σ−1W .

Prior distribution

Goal: Learn latent, local structure and parameters from observed graph y by
sampling from posterior distribution

p(α,µW ,Σ
−1
W ,π,θB,θW ,x |y) ∝ p(α,µW ,Σ

−1
W ,π,θB,θW )

× Pπ(X = x) Pθ(Y = y |X = x)

where
p(α,µW ,Σ

−1
W ,π,θB,θW ) = p(α) p(µW ) p(Σ−1W ) p(π | α) p(θB)

×

 K∏
k=1

p(θW,k | µW ,Σ−1W )


where θW = (θW,1, . . . ,θW,K).

Problem: Likelihood function is intractable and thus posterior distribution
doubly intractable.

Solution: Learn latent, local structure and parameters from observed graph y
by sampling from augmented posterior distribution

p(α,µW ,Σ
−1
W ,π,θB,θW ,x,θ

?
W ,x

?,y? |y)

∝ p(α,µW ,Σ
−1
W ,π,θB,θW ,x,y,θ

?
W ,x

?,y?)

where
p(α,µW ,Σ

−1
W ,π,θB,θW ,x,y,θ

?
W ,x

?,y?)

= p(α,µW ,Σ
−1
W ,π,θB,θW )Pπ(X = x)Pθ(Y = y |X = x)

× q(θ?W ,x
? | π,θB,θW ,x,y)Pθ?(Y? = y? |X? = x?)

where θ?W = (θ?W,1, . . . ,θ
?
W,K), X?, and Y? are auxiliary variables.

Auxiliary-variable Markov chain Monte Carlo algorithm: Schweinberger
and Handcock (2011).

Posterior distribution

Question: Can hierarchical models be recommended a priori as
models of data?
•Do hierarchical models place much prior predictive mass on

graphs which resemble real-world graphs?
•Do hierarchical models place much prior predictive mass on

extreme graphs?
Consider model with edges and triangles versus model with
within-block edges and triangles with 100 nodes and 4,950
dyads:
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Prior predictions

Question: Can hierarchical models be recommended a posteri-
ori given data?

Terrorist network behind Bali bombing in 2002:

Predictive power as function of number of blocks:
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Predictions of number of edges and triangles:
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Latent, local structure: Support group and main group recovered
with high posterior probability, with three terrorists in main
group singled out: the field commander, logistics commander,
and bomb maker.

Classic Sampson network:

Number of non-empty blocks:
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Latent, local structure: In line with expert knowledge, three well-
known groups recovered with high posterior probability.

Posterior predictions

Hierarchical models with local dependence can be considered
to be the first models of the “next generation of social network
models” (Snijders 2007, p. 324): combining latent space models
and dependence models in hierarchical fashion.

Discussion
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