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Problem Statement: 
• Analysis of human social networks involves storing and retrieving large 

dynamic point sets. 

• Latent Space Embedding:   

o Given a social network, map the nodes into a geometric space in 
accordance with a logistic regression model, where the likelihood 
of an edge increases as the distance between points decreases. 

o Solved by application of MCMC methods, such as Metropolis-
Hastings. 

o Efficiency depends on the ability to quickly answer queries 
regarding point relationships in a dynamic setting. 

• Statistical Analysis of Moving Entities:   

o Given the motion sequence for a set of agents, perform statistical 
analyses of their pattern of motion and their spatial relationships. 

o This involves storing dynamic point sets and performing queries 
over these sets. 

 Our Approach: 
• Given the unpredictable nature of MCMC algorithms, it is important that 

data structures adapt to the algorithm’s access pattern. This leads to the 
concept of self-adjusting data structures. 

• Sleator & Tarjan (1985) introduced the splay tree, a self-adjusting data 
structure for 1-dimensional data. 

• We developed a splay quadtree, a new self-adjusting data structure for 
multi-dimensional data. 

 

 

Main Results: 
Updates:  

BD-tree: 
• Spatial decomposition based on:  

  - Zig-zig 

Basic splaying: 
Primitive rotation operations: 
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Rotation: 
Balanced tree structure is maintained by rotating alternating pairs of shrink-
split nodes:  
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Static Finger Theorem: 
Splay trees adapt to structure of queries. 
• 1-dim (Sleator & Tarjan 1985)          
         total access for i1,i2,…,im takes 
         O(m +  log ( 𝑖𝑗 − 𝑓 + 1)𝑚

𝑖=0  ). 

 

 

• d-dim (new): 
         Define the working set: 
         W: set of points in a ball of  
               radius (1+c)·rb centered at f, where 

o for box queries, Q1,Q2,…,Qm, 

       rb : max
𝑗
𝑑𝑖𝑠𝑡(𝑓, 𝑄𝑗) 

o for approx. nearest neighbor queries, 
          q1,q2,…,qm, 

             rb : max
𝑗
𝑑𝑖𝑠𝑡 𝑓, 𝑞𝑗 + 𝑑𝑖𝑠𝑡(𝑞𝑗, 𝑁𝑁 𝑞𝑗 ) 

o for approx. range queries, Q1,Q2,…,Qm, 

           rb : max
𝑗
max
𝑞∈𝑄𝑗

𝑑𝑖𝑠𝑡(𝑓, 𝑞)   
 
 

x 

Theorem: 
• Insertion can be performed in O(log n)  amortized time.   
• Deletion can be performed in O(log n)  amortized time.   

Theorem:  
Given a set of n points in Rd, a splay quadtree storing these points can 
answer: 
o m box queries, in O(m log (|W|+(1/c) d-1) + n log n) time, 
o m approximate nearest neighbor queries,  or m approximate range 

queries,  in O(m (1/ε) d-1 log (|W| + (1/c) d-1) + n log n) time. 
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Splaying: 
• May be applied to any internal node. 
• Brings this node to the root through basic splaying operations.  
• Thus, each access makes future accesses to the same node more efficient. 
• Problem with a right promotion: 

 
 
 
 
 
 
 
 
 

     → Promotions must be structured so that for each right promotion,  
     left sibling has no inner box.  
→ 3-phase approach (3 passes from bottom to top) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Efficiency is established through an amortized analysis based on a potential 
function as in Sleator & Tarjan (1985) . 
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If this cell has 

an inner box, u, 
then, y’s cell has  

two inner boxes, 

u and v. 
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