

Self-Adjusting Geometric Structures for Latent-Space Embedding Eunhui Park and David M. Mount

Problem Statement:

- Analysis of human social networks involves storing and retrieving large dynamic point sets.
- Latent Space Embedding:
 - Given a social network, map the nodes into a geometric space in accordance with a logistic regression model, where the likelihood \bigcirc of an edge increases as the distance between points decreases.
 - Solved by application of MCMC methods, such as Metropolis-Ο Hastings.
 - Efficiency depends on the ability to quickly answer queries \bigcirc regarding point relationships in a dynamic setting.
- **Statistical Analysis of Moving Entities:**
 - Given the motion sequence for a set of agents, perform statistical Ο analyses of their pattern of motion and their spatial relationships.
 - This involves storing dynamic point sets and performing queries Ο over these sets.

Our Approach:

- Given the unpredictable nature of MCMC algorithms, it is important that data structures adapt to the algorithm's access pattern. This leads to the concept of self-adjusting data structures.
- Sleator & Tarjan (1985) introduced the splay tree, a self-adjusting data structure for 1-dimensional data.
- We developed a splay quadtree, a new self-adjusting data structure for multi-dimensional data.

BD-tree:

Spatial decomposition based on:

Rotation:

Balanced tree structure is maintained by rotating alternating pairs of shrinksplit nodes:

Basic splaying:

- Zig-zag

Primitive rotation operations:

Splaying:

C

A B

- May be applied to any internal node.
- Brings this node to the root through basic splaying operations.

Ε

 \overline{C}

В

Thus, each access makes future accesses to the same node more efficient. Problem with a right promotion:

 \rightarrow Promotions must be structured so that for each right promotion, left sibling has no inner box.

 \rightarrow 3-phase approach (3 passes from bottom to top)

Efficiency is established through an amortized analysis based on a potential function as in Sleator & Tarjan (1985).

- Theorem:

Static Finger Theorem:

- Splay trees adapt to structure of queries.
- 1-dim (Sleator & Tarjan 1985) total access for i_1, i_2, \dots, i_m takes
- $O(m + \sum_{i=0}^{m} \log(|i_i f| + 1)).$
- *d*-dim (new): Define the working set: W: set of points in a ball of radius $(1+c) \cdot r_h$ centered at f, where
- for box queries, Q_1, Q_2, Q_m , $r_b: \max dist(f, Q_i)$
- o for approx. nearest neighbor queries, $q_1, q_2, \dots, q_m,$ r_b : max dist(f, q_j) + dist(q_j , NN(q_j))
- for approx. range queries, $Q_1, Q_{2,...,}Q_m$, $r_b: \max_{j \in Q_i} dist(f,q)$

Theorem:

- answer:
- Ο \bigcirc

Insertion can be performed in $O(\log n)$ amortized time. Deletion can be performed in $O(\log n)$ amortized time.

Given a set of n points in \mathbb{R}^d , a splay quadtree storing these points can

m box queries, in O($m \log (|W| + (1/c)^{d-1}) + n \log n$) time, *m* approximate nearest neighbor queries, or *m* approximate range queries, in $O(m (1/\epsilon)^{d-1} \log (|W| + (1/\epsilon)^{d-1}) + n \log n)$ time.