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External-Memory Model

Problem: datasets too big to fit in memory
External-Memory Model: manage disk/memory transfers
manually! [Vitter]
Parameters:

M – memory capacity
N – # stored items
D – # disks
B – block size

We measure the number of I/O’s between disks and
memory
Key bounds:

scan(N) = θ( N
DB )

sort(N) = θ( N
DB logM/B

N
B )
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Graph Sparsity

k -core
maximal connected subgraph with all vertices having
degree ≥ k

k -core number
maximal k s.t. graph has a k -core

degeneracy
graph has degeneracy d , if d is the smallest number s.t.
every subgraph has a vertex of degree ≤ d

Fact
Graph has degeneracy d iff its k -core number is equal to d .
We call such graph d-degenerate
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Naturally Sparse Graphs

Definition
We call a graph naturally sparse if it has constant degeneracy

Planar graphs (d ≤ 5)
Random graphs [Pittel et al. (1996), Riordan (2008)]
Generated graphs [Barabasi and Albert (1999), Kleinberg
(2000)]
Real world graphs [Eppstein and Strash (2011)]
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Degeneracy Ordering

Definition
d-degeneracy ordering of G – ordering L of vertices of G s.t.
each vertex has at most d neighbors that are later in L

Fact
d-degenerate graph always has a d-degeneracy ordering

Some Notation
d – graph degeneracy
n – # vertices
m – # edges (m = O(dn))
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Sequential Case

Degeneracy ordering easy to compute
Algorithm:

while G is nonempty do
v ← vertex of smallest degree in G
remove v from G and place it at the end of ordering

Example:
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External-Memory Case

Not suitable for the external-memory case
Our solution: approximate degeneracy ordering
Algorithm (ε > 0):

while G is nonempty do
S ← nε/(2 + ε) vertices of smallest degree in G
remove S from G and place at the end of ordering

Example (ε = 1):
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External-Memory Case: Analysis

Computes a (2 + ε)d-degeneracy ordering of a
d-degenerate graph
Does not require prior knowledge of d
O(lg n) while iterations
O(sort(dn)) overall I/O complexity
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Finding Cycles of Given Length

Cycles of Given Length

Problem: find a cycle of length c in graph G
NP-complete in general case, feasible for small c
Our algorithm – external-memory adaptation of a
sequential algorithm [Alon et al. (2009)]
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All Maximal Cliques

All Maximal Cliques

Problem: given graph G, list all its maximal cliques
Basic version of the algorithm [Bron and Kerbosch (1973)]:
recursive search maintaining the following sets:

R – current clique (possibly non-maximal)
P – vertices to be considered for adding to clique
X – forbidden vertices (not to be added to clique)

Further improved [Tomita et al. (2006)]
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All Maximal Cliques

Algorithm

[Eppstein et al. (2010)]: Run the improved version of the
algorithm with initial values:

R – vertex v
P – later neighbors of v in degeneracy ordering
X – earlier neighbors of v in degeneracy ordering

(for every v )

Runs in O(3d/3dn) time
Our external-memory version of this algorithm:
O(3δ/3sort(δn)) I/O’s (δ = (2 + ε)d)
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Summary

Approximate degeneracy ordering can be efficiently
computed even for huge graphs by external-memory
algorithm

Existing sequential algorithms utilizing degeneracy
ordering can be adapted into the external-memory model
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Thank you!
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