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The Memory Hierarchy
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Introduction

External-Memory Model

@ Problem: datasets too big to fit in memory

@ External-Memory Model: manage disk/memory transfers
manually! [Vitter]
@ Parameters:
e M — memory capacity
o N — # stored items
o D — # disks
o B —block size
@ We measure the number of 1/O’s between disks and
memory
@ Key bounds:
o scan(N) = 0(45)
o sort(N) = 6(p5logy,s §)



Introduction

Graph Sparsity

@ k-core
maximal connected subgraph with all vertices having
degree > k

@ k-core number
maximal k s.t. graph has a k-core

@ degeneracy

graph has degeneracy d, if d is the smallest number s.t.
every subgraph has a vertex of degree < d
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Graph Sparsity

@ k-core
maximal connected subgraph with all vertices having
degree > k

@ k-core number
maximal k s.t. graph has a k-core

@ degeneracy

graph has degeneracy d, if d is the smallest number s.t.
every subgraph has a vertex of degree < d

Graph has degeneracy d iff its k-core number is equal to d.
We call such graph d-degenerate
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Naturally Sparse Graphs

Definition
We call a graph naturally sparse if it has constant degeneracy




Introduction

Naturally Sparse Graphs

Definition
We call a graph naturally sparse if it has constant degeneracy

@ Planar graphs (d < 5)
@ Random graphs [Pittel et al. (1996), Riordan (2008)]

@ Generated graphs [Barabasi and Albert (1999), Kleinberg
(2000)]

@ Real world graphs [Eppstein and Strash (2011)]



Degeneracy Ordering

Degeneracy Ordering

Definition
d-degeneracy ordering of G — ordering L of vertices of G s.t.
each vertex has at most d neighbors that are later in L

d-degenerate graph always has a d-degeneracy ordering

Some Notation
@ d — graph degeneracy
@ n— # vertices
@ m— # edges (m = O(dn))




Degeneracy Ordering

Sequential Case

@ Degeneracy ordering easy to compute
@ Algorithm:

while G is nonempty do
v « vertex of smallest degree in G
remove v from G and place it at the end of ordering
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@ Algorithm:
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Degeneracy Ordering

External-Memory Case

@ Not suitable for the external-memory case
@ Our solution: approximate degeneracy ordering
@ Algorithm (e > 0):

while G is nonempty do

S «— ne/(2 + ¢€) vertices of smallest degree in G
remove S from G and place at the end of ordering
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@ Not suitable for the external-memory case
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@ Algorithm (e > 0):

while G is nonempty do

S «— ne/(2 + ¢€) vertices of smallest degree in G
remove S from G and place at the end of ordering

@ Example (e = 1):



Degeneracy Ordering

External-Memory Case: Analysis

@ Computes a (2 -+ ¢)d-degeneracy ordering of a
d-degenerate graph

@ Does not require prior knowledge of d
@ O(lgn) while iterations
@ O(sort(dn)) overall I/O complexity
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Finding Cycles of Given Length

Cycles of Given Length

@ Problem: find a cycle of length ¢ in graph G
@ NP-complete in general case, feasible for small ¢

@ Our algorithm — external-memory adaptation of a
sequential algorithm [Alon et al. (2009)]
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All Maximal Cliques

All Maximal Cliques

@ Problem: given graph G, list all its maximal cliques
@ Basic version of the algorithm [Bron and Kerbosch (1973)]:
recursive search maintaining the following sets:

e R —current clique (possibly non-maximal)
e P —vertices to be considered for adding to clique
o X —forbidden vertices (not to be added to clique)

@ Further improved [Tomita et al. (2006)]
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All Maximal Cliques

Algorithm

@ [Eppstein et al. (2010)]: Run the improved version of the
algorithm with initial values:
e R—vertex v
e P —later neighbors of v in degeneracy ordering
e X — earlier neighbors of v in degeneracy ordering

(for every v)
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All Maximal Cliques

Algorithm

@ [Eppstein et al. (2010)]: Run the improved version of the
algorithm with initial values:

e R—vertex v
e P —later neighbors of v in degeneracy ordering
e X — earlier neighbors of v in degeneracy ordering

(for every v)

@ Runs in O(393dn) time

@ Our external-memory version of this algorithm:
O(3%3sort(6n)) 1/O’s (6 = (2 + €)d)



Summary

Summary

@ Approximate degeneracy ordering can be efficiently
computed even for huge graphs by external-memory
algorithm
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Summary

@ Approximate degeneracy ordering can be efficiently
computed even for huge graphs by external-memory
algorithm

@ Existing sequential algorithms utilizing degeneracy
ordering can be adapted into the external-memory model



Betweenness Centrality

The betweenes of a vertexvin a
graph G: = (V,E) with V vertices is
defined as follows:

1. For each pair of vertices (s,t),

consider the shortest paths between
them.

2. For each pair of vertices (s,t),
determine the fraction of shortest
paths that pass through the vertex in
question (here, vertex v).

3. Sum this fraction over all pairs of
vertices (s,t).



Thank you!
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