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Counting Processes for networks
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I Goal: Model a
dynamically evolving
network using
counting processes.

I Two possibilities (using terminology of Butts, 2008):
I Egocentric: The counting process Ni (t) = cumulative number

of “events” involving the ith node by time t.
I Relational: The counting process Nij(t) = cumulative number

of “events” involving the (i , j)th node pair by time t.
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Counting Process approach: Egocentric example

I Combine the Ni (t) to give a
multivariate counting process

N(t) = (N1(t), . . . ,Nn(t)).

I Genuinely multivariate; no
assumption about the
independence of Ni (t).
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Egocentric Example: Modeling of Citation Networks

I New papers join the network over time.

I At arrival, a paper cites others that are already in the network.

I Main dynamic development: Number of citations received.

Time 

I Ni (t): Number of citations to paper i by time t.

I “At-risk” indicator Ri (t): Equal to I{tarr
i < t}.



Relational Example: Modeling a network of contacts

I Metafilter: Community weblog for sharing links and discussing
content among its users.

I Pattern of contacts: Dynamically evolving network

I Links are non-recurrent; i.e., Nij(t) is either 0 or 1.

I “At-risk” indicator Rij(t) = I{max(tarr
i , tarr

j ) < t < teij}.

contactee

contacter date

1 14155 2004-06-15 12:00:00.000

1 2238 2004-06-15 12:00:00.000

1 14275 2004-06-15 12:00:00.000

...

13099 7683 2004-06-17 16:31:51.040

15231 14752 2004-06-17 16:31:51.040

...

45087 7610 2007-10-31 12:23:15.683

16719 61 2007-10-31 13:28:38.670

48758 1 2007-10-31 13:47:16.843

!



Submartingales: Egocentric Case

Each Ni (t) is nondecreasing in time, so N(t) may be considered a
submartingale; i.e., it satisfies

E [N(t) | past up to time s] ≥ N(s) for all t > s.
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Theory: The Doob-Meyer Decomposition

Any submartingale may be uniquely decomposed as

N(t) =

∫ t

0
λ(s) ds + M(t) :

I λ(t) is the “signal” at time t, called the intensity function

I M(t) is the “noise,” a continuous-time Martingale.

I We will model each λi (t) or λij(t).
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Modeling the Intensity Process, Part I: Egocentric Case

The intensity process for node i is given by

I Cox Proportional Hazard Model, fixed coefficients:

λi (t|Ht−) = Ri (t)α0(t) exp
(
β>si (t)

)
,

I Aalen additive model, time-varying coefficients:

λi (t|Ht−) = Ri (t)
(
β0(t) + β(t)>si (t)

)
,

where
I Ri (t) = I (t > tarr

i ) is the “at-risk indicator”
I Ht− is the past of the network up to but not including time t
I α0(t) or β0(t) is the baseline hazard function
I β is the vector of coefficients to estimate
I si (t) = (si1(t), . . . , sip(t)) is a p-vector of statistics for paper i

Let us consider the citation network examples. . .



Preferential Attachment Statistics

For each cited paper j already in the network. . .

I First-order PA: sj1(t) =
∑N

i=1 yij(t
−). “Rich get richer” effect

I Second-order PA: sj2(t) =
∑

i 6=k yki (t
−)yij(t

−).
Effect due to being cited by well-cited papers

j

Statistics in red are time-dependent. Others are fixed once j joins
the network.

NB: y(t−) is the network just prior to time t.



Recency PA Statistic

For each cited paper j already in the network. . .

I Recency-based first-order PA (we take Tw = 180 days):
sj3(t) =

∑N
i=1 yij(t

−)I (t − tarr
i < Tw ).

Temporary elevation of citation intensity after recent citations

j

Statistics in red are time-dependent. Others are fixed once j joins
the network.

NB: y(t−) is the network just prior to time t.



Triangle Statistics

For each cited paper j already in the network. . .

I “Seller” statistic: sj4(t) =
∑

i 6=k yki (t
−)yij(t)ykj(t

−).

I “Broker” statistic: sj5(t) =
∑

i 6=k ykj(t)yji (t
−)yki (t

−).

I “Buyer” statistic: sj6(t) =
∑

i 6=k yjk(t)yki (t)yji (t
−).

A
Seller

B

C

Broker

Buyer

Statistics in red are time-dependent. Others are fixed once j joins
the network.

NB: y(t−) is the network just prior to time t.



Out-Path Statistics

For each cited paper j already in the network. . .

I First-order out-degree (OD): sj7(t) =
∑N

i=1 yji (t
−).

I Second-order OD: sj8(t) =
∑

i 6=k yjk(t−)yki (t
−).

j

Statistics in red are time-dependent. Others are fixed once j joins
the network.

NB: y(t−) is the network just prior to time t.



Topic Modeling Statistics

Additional statistics, using abstract text if available, as follows:

I An LDA model (Blei et al, 2003) is learned on the training set.

I Topic proportions θ generated for each training node.

I LDA model also used to estimate topic proportions θ for each
node in the test set.

I We construct a vector of similarity statistics:

sLDA
j (tarr

i ) = θi ◦ θj ,

where ◦ denotes the element-wise product of two vectors.

I We use 50 topics; each sj component has a corresponding β.



Partial Likelihood (how to fit the Cox PH Model)

Recall: The intensity process for node i is

λi (t|Ht−) = Ri (t)α0(t) exp
(
β>si (t)

)
.

If α0(t) ≡ α0(t,γ), we may use the “local Poisson-ness” of the
multivariate counting process to obtain (and maximize) a
likelihood function (details omitted).

However, we treat α0 as a nuisance parameter and take a partial
likelihood approach as in Cox (1972): Maximize

L(β) =
m∏

e=1

exp
(
β>sie (te)

)
∑n

i=1 Ri (te) exp
(
β>si (te)

) =
m∏

e=1

exp
(
β>sie (te)

)
κ(te)

.

Computational Trick: Write κ(te) = κ(te−1) + ∆κ(te), then
optimize ∆κ(te) calculation.



Least Squares (How to fit the Aalen Additive Model)

Recall: The intensity process for node i is

λi (t|Ht−) = Ri (t)
(
β0(t) + β(t)>si (t)

)
.

I We do inference not for the βk but rather for their
time-integrals

Bk(t) =

∫ t

0
βk(s)ds. (1)

I Then

B̂(t) =
∑
te≤t

J(te)
[
W(te)

>W(te)
]−1

W(te)
>∆N(te), (2)

where
I W(t) is N(N − 1)× p with (i , j)th row Rij(t)s(i , j , t)>;
I J(t) is the indicator that W(t) has full column rank.



Data Sets We Analyzed

Three citation network datasets from the physics literature:

1. APS: Articles in Physical Review Letters, Physical Review, and
Reviews of Modern Physics from 1893 through 2009. Timestamps
are monthly for older, daily for more recent.

2. arXiv-PH: arXiv high-energy physics phenomenology articles from
Jan. 1993 to Mar. 2002. Timestamps are daily.

3. arXiv-TH: High-energy physics theory articles spanning from
January 1993 to April 2003. Timestamps are continuous-time
(millisecond resolution). Also includes text of paper abstracts.

Papers Citations Unique Times
APS 463,348 4,708,819 5,134
arXiv-PH 38,557 345,603 3,209
arXiv-TH 29,557 352,807 25,004



Three Phases

1. Statistics-building phase: Construct network history and
build up network statistics.

2. Training phase: Construct partial likelihood and estimate
model coefficients.

3. Test phase: Evaluate predictive capability of the learned
model.

Statistics-building is ongoing even through the training and test
phases. The phases are split along citation event times.

Number of unique citation
event times in the three phases:

Building Training Test
APS 4,934 100 100
arXiv-PH 2,209 500 500
arXiv-TH 19,004 1000 5000



Why Such Long Building Phases?

I The lengthy building phase mitigates truncation effects at the
beginning of network formation and effects of severely
grouped event times

I Training and test windows still cover a substantial period of
time (e.g. 2.5 years for APS)

I Performance is relatively invariant to the size of the training
windows. We achieved essentially the same results using
windows of size 2000 and 5000 for arXiv-TH.

Number of unique citation
event times in the three phases:

Building Training Test
APS 4,934 100 100
arXiv-PH 2,209 500 500
arXiv-TH 19,004 1000 5000



Average Normalized Ranks

I Compute “rank” for each true citation among sorted
likelihoods of each possible citation.

I Normalize by dividing by the number of possible citations.

I Average of the normalized ranks of each observed citation.

I Lower rank indicates better predictive performance.
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I Batch sizes are 3000, 500, 500, respectively.

I PA: pref. attach only (s1(t)); P2PT: s1, . . . , s8 except s3;

I P2PTR180: s1, . . . , s8; LDA: LDA stats only



Average Partial Loglikelihood

I Compute average of the partial likelihoods for each citation
event.
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Recall Performance

Recall: Proportion of true citations among largest K likelihoods.
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Coefficient Estimates for LDA + P2PTR180 Model
Statistics Coefficients (β)

s1 (PA) 0.01362

s2 (2nd PA) 0.00012

s3 (PA-180) 0.02052

s4 (Seller) -0.00126

s5 (Broker) -0.00066

s6 (Buyer) -0.00387

s7 (1st OD) 0.00090

s8 (2nd OD) 0.02052

All coefficient
estimates are
significant at the
0.0001 level.

A
Seller

B

C

Broker

Buyer

D
B

C
Diverse seller effect:
D more likely cited than A.

A
Seller

B

C

Broker

Buyer

A
B

E
Diverse buyer effect:
E more likely cited than C .
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Network Data Sets

Continuous-Time Regression Models for Longitudinal Networks (Vu, Asuncion, Hunter, Smyth) 

Network Data Sets 

Nodes Edges Stats-Building 
Phase 

Training 
Phase 

Test 
Phase 

Irvine    1,899   20,296     7,073     7,646    5,507 

MetaFilter 51,362    76,791   60,376     8,763    7,620 

!  Simulated data (SIM-1, SIM-2) 
!  Real networks: 

!  Irvine: an online social network at UC Irvine 
 (4/2004 to 10/2004). 

!  MetaFilter: a community weblog contact network 
 (8/2007 to 2/2011). 



Recovering Time-Varying Coefficients

Continuous-Time Regression Models for Longitudinal Networks (Vu, Asuncion, Hunter, Smyth) 

Recovering time-varying coefficients 

SIM-1 

SIM-2 

Reciprocity Transitivity !  Simulated data from ground-
truth coefficients: 
!  SIM-1: Constant coefficients 

for reciprocity, transitivity. 
!  SIM-2: Varying coefficients 

for reciprocity, transitivity. 

!  Learned time-varying 
coefficients of Aalen model 
on simulated data. 

Ground-truth 
Estimate 



Irvine Data Set

Continuous-Time Regression Models for Longitudinal Networks (Vu, Asuncion, Hunter, Smyth) 

Irvine data set 

!  Aalen coefficients suggest two distinct phases of network evolution, 
consistent with an independent analysis [Panzarasa et al, 2009]. 

 

!  On prediction experiments, Aalen/Cox outperforms logistic regression. 



Metafilter Data Set

Continuous-Time Regression Models for Longitudinal Networks (Vu, Asuncion, Hunter, Smyth) 

MetaFilter data set 

!  Network effects continuously change over time. 
 

!  Time-varying Aalen model outperforms Cox model. 
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