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MURI Themes and Goals

I Large-scale social networks

I Spatially embedded networks

I Rich models with complex covariates

I Scalable methods and models
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Spatially Embedded Networks

I Social interaction occurs within a spatial context
I Opportunities for, costs of interaction strongly influenced by

spatial factors
I Interest in spatial factors per se (e.g., neighborhood research)
I Propinquity known to be a powerful determinant of tie

probability

I Extension to attribute spaces (Blau space)
I Useful way to parameterize homophily, clustering effects

I Simple idea: assign vertices to spatial locations

I Location function: ` : V ⇒ S where S is an abstract space.

I Take ` as given fixed, e.g. latitude/longitude coordinates
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Spatial Bernoulli Graphs, (Butts 2002)

I A simple family of models for spatially embedded social
networks

Pr(Y = y|D) =
∏
{i ,j}

B
(
Yij = yij |Fd (Dij)

)
(1)

I Y ∈ {0, 1}N×N

I D ∈ [0,∞)N×N

I Fd : [0,∞) 7→ [0, 1]

I Assumes that dependence among edges is absorbed by the
distance structure – edges conditionally independent.

I Related to gravity model from geography.

I Advantage: Estimable under sampling and scalable

I How does distance effect tie probability?
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Spatial Interaction Function

I Decay as a power law in distance

Fd(x) =
pb

(1 + αx)γ

where 0 ≤ pb ≤ 1 is a baseline tie probability, α ≥ 0 is a
scaling parameter, and γ > 0 is the exponent which controls
the distance effect

I Attenuated power law, arctangent decay, etc.
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Spatial Interaction Function
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Attenuated Power Law

I Small changes in the SIF
can make big differences in
the underlying network

I Changes in the functional
form of the SIF can also
make a big difference

I Notice that the difference
between the APL and the
PL is not visually striking
but the resulting networks
are quite different

E. Spiro espiro@uci.edu University of California, Irvine January 10, 2012



Theories of the Distance Effect

I How does distance effect tie probability?
I Is the way in which distance matters homogeneous?

I Vary along lines of status or prestige
I Want to allow for inhomogeneity in the relationship between

distance and tie probability
I How to extend the spatial Bernoulli models
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Spatial Bernoulli Models with Covariates

I We can extend the model in a simple way to include tie
covariates

I Add GLM structure to the parameters of the SIF, Fd

Pr(Yij = 1) =
pbij

(1 + αijdij)γij

where
pbij = ilogit(θ ∗ Xij)

αij = exp(ψ ∗Wij)

γij = exp(φ ∗ Uij)

and where θ, ψ, and φ are parameter vectors, and X, W, and
U are covariate matrices.
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Application: Selective Mixing on Facebook

I Facebook is an extremely large online social network

I Data: sample of almost 1 million egocentric networks
(Gjoka et al. 2009)

I Each Facebook user may indicate a university affiliation,
< 4% actually do

I Rich set of covariates at the institution level

I Online context is a best case scenario for equal mixing and
“weak” distance effects

E. Spiro espiro@uci.edu University of California, Irvine January 10, 2012



Selecting Covariates of Interest

I Institutional prestige: USNWR National University Ranking
I Top 194 schools receive a rank, score, and selectivity measure
I Prestige as the first principal component scores of these

measures

I Public/Private

I Endowment, Tuition, Location etc.
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Quick Comment on Model Fitting and Computation

I Fitting these models is not an easy task

I Bayesian point estimation

I Importance sampling to fit the exponential family model

I Numerical tricks
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Model Fitting and Selection

Model pb Effects α Effects γ Effects SIF Form BIC
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Model 1
√ √ √ √ √ √ √ √

pl 24911904
Model 2

√ √ √ √ √ √ √ √
pl 24918710

Model 3
√ √ √ √ √ √ √

apl 24926060
Model 4

√ √ √ √ √ √ √ √
apl 24933741

Model 5
√ √ √ √ √ √ √

apl 24935807
Model 6

√ √ √
apl 25139114
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Facebook Friendship Network
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A Model of Facebook Friendship

Parameter Component Estimate p.s.d.e.

pb

Intercept -6.0974 0.0061 **
Private-Public -0.4340 0.0200 **
Public-Public -0.7501 0.0063 **
Prestige -0.0176 0.0000 **

α

Intercept 2.1687 0.0259 **
Private-Public -2.2169 0.0493 **
Public-Public -4.5387 0.0269 **
Prestige -0.0187 0.0001 **

γ
Intercept -1.0789 0.0016 **
Private-Public 0.4523 0.0026 **
Public-Public 1.0009 0.0023 **
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A Model of Facebook Friendship
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A Model of Facebook Friendship
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A Model of Facebook Friendship
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Effects of Difference in Prestige
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Summary

I Spatial mixing models to sampled data from Facebook

I Model extension to include covariates

I Non-trivial model fitting procedure

I Inhomogeneous relationship between distance and tie
probability

I Scalable models for large-scale social networks
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