Large-Scale Social Network Analysis of Facebook Data

Emma S. Spiro¹ Zack W. Almquist¹ Carter T. Butts^{1,2}

> ¹Department of Sociology ²Institute for Mathematical Behavioral Sciences University of California - Irvine

Presented at MURI All Hands Meeting January 10, 2012

This material is based on research supported by the Office of Naval Research under award N00014-08-1-1015.

As well as the National Science Foundation under awards BCS-0827027 and OIA-1028394

University of California, Irvine

MURI Themes and Goals

- Large-scale social networks
- Spatially embedded networks
- Rich models with complex covariates
- Scalable methods and models

Spatially Embedded Networks

Social interaction occurs within a spatial context

- Opportunities for, costs of interaction strongly influenced by spatial factors
- Interest in spatial factors per se (e.g., neighborhood research)
- Propinquity known to be a powerful determinant of tie probability
- Extension to attribute spaces (Blau space)
 - Useful way to parameterize homophily, clustering effects
- Simple idea: assign vertices to spatial locations
- Location function: $\ell: V \Rightarrow S$ where S is an abstract space.
- Take ℓ as given fixed, e.g. latitude/longitude coordinates

Spatial Bernoulli Graphs, (Butts 2002)

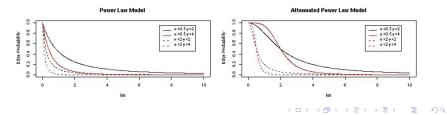
 A simple family of models for spatially embedded social networks

$$\Pr(\mathbf{Y} = \mathbf{y} | \mathbf{D}) = \prod_{\{i,j\}} B(Y_{ij} = y_{ij} | \mathcal{F}_d(D_{ij}))$$
(1)

►
$$\mathbf{Y} \in \{0, 1\}^{N \times N}$$

► $\mathbf{D} \in [0, \infty)^{N \times N}$

- $\mathcal{F}_d: [0,\infty) \mapsto [0,1]$
- Assumes that dependence among edges is absorbed by the distance structure – edges conditionally independent.
- Related to gravity model from geography.
- Advantage: Estimable under sampling and scalable
- ► How does distance effect tie probability?

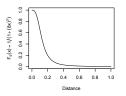

Spatial Interaction Function

Decay as a power law in distance

$$\mathcal{F}_d(x) = \frac{p_b}{(1+\alpha x)^{\gamma}}$$

where $0 \le p_b \le 1$ is a baseline tie probability, $\alpha \ge 0$ is a scaling parameter, and $\gamma > 0$ is the exponent which controls the distance effect

Attenuated power law, arctangent decay, etc.



Spatial Interaction Function

Attenuated Power Law

- Small changes in the SIF can make big differences in the underlying network
- Changes in the functional form of the SIF can also make a big difference
- Notice that the difference between the APL and the PL is not visually striking but the resulting networks are quite different

(日) (周) (王) (王)

Theories of the Distance Effect

- How does distance effect tie probability?
- Is the way in which distance matters homogeneous?
 - Vary along lines of status or prestige
 - Want to allow for inhomogeneity in the relationship between distance and tie probability
 - How to extend the spatial Bernoulli models

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Spatial Bernoulli Models with Covariates

- We can extend the model in a simple way to include tie covariates
- Add GLM structure to the parameters of the SIF, \mathcal{F}_d

$$\mathsf{Pr}(Y_{ij}=1) = rac{oldsymbol{p}_{bij}}{(1+lpha_{ij}oldsymbol{d}_{ij})^{\gamma_{ij}}}$$

where

$$p_{b_{ij}} = ilogit(\theta * X_{ij})$$
$$\alpha_{ij} = exp(\psi * W_{ij})$$
$$\gamma_{ij} = exp(\phi * U_{ij})$$

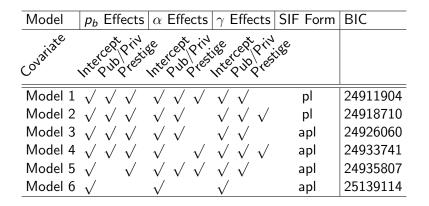
and where θ , ψ , and ϕ are parameter vectors, and **X**, **W**, and **U** are covariate matrices.

Application: Selective Mixing on Facebook

- Facebook is an extremely large online social network
- Data: sample of almost 1 million egocentric networks (Gjoka et al. 2009)
- Each Facebook user may indicate a university affiliation,
 < 4% actually do
- Rich set of covariates at the institution level
- Online context is a best case scenario for equal mixing and "weak" distance effects

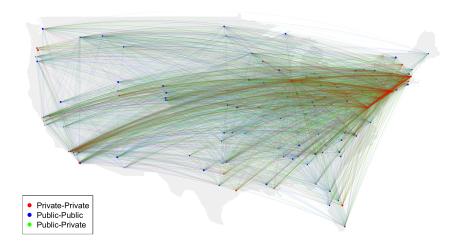
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Selecting Covariates of Interest


- Institutional prestige: USNWR National University Ranking
 - ► Top 194 schools receive a rank, score, and selectivity measure
 - Prestige as the first principal component scores of these measures
- Public/Private
- Endowment, Tuition, Location etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Quick Comment on Model Fitting and Computation


- Fitting these models is not an easy task
- Bayesian point estimation
- Importance sampling to fit the exponential family model
- Numerical tricks

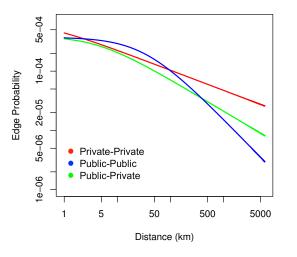
Model Fitting and Selection

- ▲ ロ ト → 圖 ト → 画 ト → 画 - シッペマ

Facebook Friendship Network

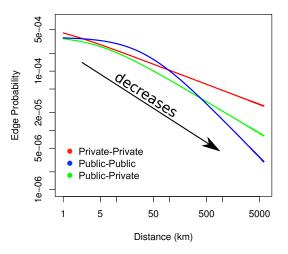
E. Spiro espiro@uci.edu

University of California, Irvine

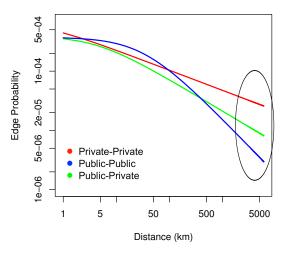

January 10, 2012

э

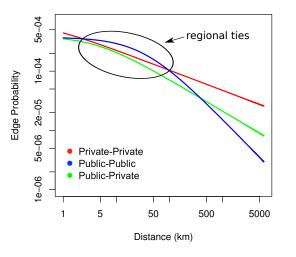
イロン 不良と 不良とう


Parameter	Component	Estimate	p.s.d.e.	
р _Ь	Intercept	-6.0974	0.0061	**
	Private-Public	-0.4340	0.0200	**
	Public-Public	-0.7501	0.0063	**
	Prestige	-0.0176	0.0000	**
α	Intercept	2.1687	0.0259	**
	Private-Public	-2.2169	0.0493	**
	Public-Public	-4.5387	0.0269	**
	Prestige	-0.0187	0.0001	**
γ	Intercept	-1.0789	0.0016	**
	Private-Public	0.4523	0.0026	**
	Public-Public	1.0009	0.0023	**

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

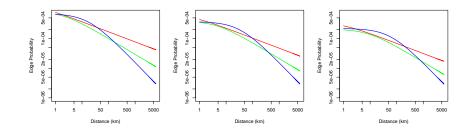

э

イロト イヨト イヨト イヨト


э

・ロン ・四 と ・ ヨン ・ ヨン

э


イロト イヨト イヨト イヨト

э

・ロン ・四 と ・ ヨン ・ ヨン

Effects of Difference in Prestige

E. Spiro espiro@uci.edu

University of California, Irvine

January 10, 2012

э

・ロト ・回ト ・ヨト ・ヨト

Summary

- Spatial mixing models to sampled data from Facebook
- Model extension to include covariates
- Non-trivial model fitting procedure
- Inhomogeneous relationship between distance and tie probability
- Scalable models for large-scale social networks