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MURI Themes and Goals

v

Large-scale social networks

v

Spatially embedded networks

v

Rich models with complex covariates

Scalable methods and models

v
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Spatially Embedded Networks

v

Social interaction occurs within a spatial context
» Opportunities for, costs of interaction strongly influenced by
spatial factors
» Interest in spatial factors per se (e.g., neighborhood research)
» Propinquity known to be a powerful determinant of tie
probability

v

Extension to attribute spaces (Blau space)
» Useful way to parameterize homophily, clustering effects

v

Simple idea: assign vertices to spatial locations

v

Location function: £: V = S where S is an abstract space.

v

Take ¢ as given fixed, e.g. latitude/longitude coordinates
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Spatial Bernoulli Graphs, (Butts 2002)

» A simple family of models for spatially embedded social
networks

Pr(Y =y|D) = [] B(Yj = yilFa (Dy)) (1)
{iJ}
» Y € {0, 1}VxN
» D € [0,00)N*N
» Fq:[0,00) — [0,1]
Assumes that dependence among edges is absorbed by the
distance structure — edges conditionally independent.

v

v

Related to gravity model from geography.

v

Advantage: Estimable under sampling and scalable
How does distance effect tie probability?

v
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Spatial Interaction Function

> Decay as a power law in distance
Pb
F =__ M
a(x) (1+ ax)”

where 0 < pp, < 1 is a baseline tie probability, « > 0 is a
scaling parameter, and v > 0 is the exponent which controls
the distance effect

> Attenuated power law, arctangent decay, etc.

Power Law Model Attenuated Power Law Model

Edge Probability
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Spatial Interaction Function

Power Law

1/(1+8x)°

Fy(x)
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Distance

Attenuated Power Law

1/(1+(8%)%)

Fy(x)
00 02 04 06 08 10

Distance

» Small changes in the SIF
can make big differences in
the underlying network

» Changes in the functional
form of the SIF can also
make a big difference

» Notice that the difference
between the APL and the
PL is not visually striking
but the resulting networks
are quite different
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Theories of the Distance Effect

» How does distance effect tie probability?
» Is the way in which distance matters homogeneous?
» Vary along lines of status or prestige
» Want to allow for inhomogeneity in the relationship between

distance and tie probability
» How to extend the spatial Bernoulli models
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-
Spatial Bernoulli Models with Covariates

» We can extend the model in a simple way to include tie
covariates

» Add GLM structure to the parameters of the SIF, Fy

Pb;;
Pr(Yyj=1)= %
W=D = gy

where
pb; = ilogit(  Xj;)
ajj = exp(th + W)
i = exp(¢ * Uj)

and where 6, 9, and ¢ are parameter vectors, and X, W, and
U are covariate matrices.
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Application: Selective Mixing on Facebook

» Facebook is an extremely large online social network

» Data: sample of almost 1 million egocentric networks
(Gjoka et al. 2009)

» Each Facebook user may indicate a university affiliation,
< 4% actually do

» Rich set of covariates at the institution level

» Online context is a best case scenario for equal mixing and
“weak” distance effects
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Selecting Covariates of Interest

> Institutional prestige: USNWR National University Ranking

» Top 194 schools receive a rank, score, and selectivity measure
> Prestige as the first principal component scores of these
measures

» Public/Private

» Endowment, Tuition, Location etc.
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Quick Comment on Model Fitting and Computation

v

Fitting these models is not an easy task

v

Bayesian point estimation

v

Importance sampling to fit the exponential family model

Numerical tricks

v
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Model Fitting and Selection

Model \pb Effects\a Effectsh Effects\SIF Form | BIC

& & & S
& R SR8 LR
E RN FROREERYR”
Model 1 v/ vV v v vV vV V V pl 24911004
Model 2 / / v/ V NARVARYi pl 24918710
Model 3 / / v/ V V vV Vv apl 24926060
Model4 v/ v/ vV vV VvV vV VvV V apl 24933741
Model 5 +/ vV VvVV VY apl 24935807
Model 6 / Vv Vv apl 25139114
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Facebook Friendship Network
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A Model of Facebook Friendship

Parameter Component  Estimate p.s.d.e.
Intercept -6.0974 0.0061 **
Private-Public  -0.4340 0.0200 **

Pb Public-Public  -0.7501 0.0063 **
Prestige -0.0176 0.0000 **
Intercept 2.1687 0.0259 **
Private-Public -2.2169 0.0493 **

@ Public-Public  -4.5387 0.0269 **
Prestige -0.0187 0.0001 **
Intercept 21.0780 0.0016 **

~y Private-Public  0.4523 0.0026 **
Public-Public 1.0009 0.0023 **
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A Model of Facebook Friendship
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A Model of Facebook Friendship
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A Model of Facebook Friendship
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A Model of Facebook Friendship
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Effects of Difference in Prestige

Edge Probability
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Summary

v

Spatial mixing models to sampled data from Facebook

v

Model extension to include covariates

v

Non-trivial model fitting procedure

v

Inhomogeneous relationship between distance and tie
probability

v

Scalable models for large-scale social networks
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