Exponential-family Random Network Models (ERNM)

Ian Fellows

UCLA

January 9, 2012

Ian Fellows Exponential-family Random Network Models (ERNM)

回 と く ヨ と く ヨ と

- Random graphs == Random connections, Fixed nodal attributes
- Gibbs/Markov random fields == Fixed connections, Random nodal attributes
- ► ERNM == Random connections, Random nodal attributes

・ 回 と ・ ヨ と ・ ヨ と

3

Let Y be an n by n matrix who's entries $Y_{i,j}$ indicate whether subject i and j are connected, where n is the size of the population. Further let X be a $n \times q$ matrix of nodal variates. We define the *network* to be the random variable (Y, X). Then a joint exponential family model for the network may be written as:

$$P(X = x, Y = y|\eta) = \frac{1}{c(\eta)}e^{\eta h(x,y)}, \qquad (x,y) \in \mathcal{N}$$
(1)

伺下 イヨト イヨト

Suppose that h is composed such that the model can be expressed as

$$P(X = x, Y = y | \eta_1, \eta_2) = \frac{1}{c(\eta_1, \eta_2)} e^{\eta_1 h_1(x) + \eta_2 h_2(y)} \quad (x, y) \in \mathcal{N}.$$
(2)

Then

$$P(X = x|\eta_1) = \frac{1}{c_1(\eta_1)}e^{\eta_1 h_1(x)}$$
$$P(Y = y|\eta_2) = \frac{1}{c_2(\eta_2)}e^{\eta_2 h_2(y)}.$$

通 とう ほうとう ほうど

Joint model:

$$P(X = x, Y = y | \eta_1, \eta_2) \propto e^{\eta_1 \sum_i \sum_j y_{i,j} + \eta_2 \sum_i \sum_j x_i y_{i,j} x_j}$$

With conditional distributions being:

$$P(Y_{i,j} = y_{i,j} | X = x, \eta_1, \eta_2) \propto e^{\eta_1 y_{i,j} + \eta_2 x_i y_{i,j} x_j}$$
$$P(X = x | Y = y, \eta_2) \propto e^{\eta_2 \sum_i \sum_j x_i y_{i,j} x_j}$$

白 ト く ヨ ト く ヨ ト

Pathological Example: Ising as a Joint Model

Degeneracy: Oh My!!!

Figure: 100,000 draws from an Ising Joint Model with $\eta_1 = 0$ and $\eta_2 = 0.13$. Mean values are marked in red.

伺 ト イヨト イヨ

Oh well, better give up.

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

But wait, is there a better measure of homophily which doesn't display degeneracy?

▲圖 → ▲ 国 → ▲ 国 →

... 6 months pass

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

$$reg_homophily(k, l) = \sum_{i:x_i=k} \sqrt{d_{i,l}} - E_{binom}(\sqrt{d_{i,l}}),$$

where $d_{i,l}$ is the number of edges connecting node *i* to nodes in group *l*, and $E_{binom}(\sqrt{d_{i,l}})$ is the expectation of the square root of a binomial variable, with probability equal to the proportion of nodes in group *l* and size equal to the out-degree of node *i*.

伺 と く き と く き と

$$P(Z = z, X = x, Y = y | \eta, \beta, \lambda) = \frac{1}{c(\beta, \eta, \lambda)} e^{zx\beta \cdot +\eta h(x, y) + \lambda g(z, y)}.$$
(3)

$$P(z_{i} = 1 | z_{-i}, x_{i}, Y = y, \beta, \lambda) = \frac{e^{x_{i}\beta}}{e^{\lambda [g(z^{-}, y) - g(z^{+}, y)]} + e^{x_{i}\beta}}.$$
 (4)

where z_{-i} represents the set of z not including z_i , z^+ represents z where $z_i = 1$, z^- is z where $z_i = 0$, and x_i represents the *i*th row of X.

高 とう ヨン うまと

	η	Std. Error	Z	p-value
Mean Degree	-167.90	8.51	-19.73	< 0.001
Log Variance of Degree	22.18	10.01	2.22	0.027
Degree = 0	3.91	0.47	8.28	< 0.001
Degree = 1	2.20	0.38	5.86	< 0.001
Degree = 2	0.73	0.35	2.05	0.041
Grade = 9	0.88	0.78	1.13	0.258
Grade=10	1.74	0.92	1.89	0.058
Grade=11	2.53	0.79	3.20	0.001
Within Grade Homophily	3.97	0.47	8.44	< 0.001
+1 Grade Homophily	0.50	0.33	1.54	0.125
+2 Grade Homophily	-1.07	0.27	-4.03	< 0.001
+3 Grade Homophily	-0.59	0.40	-1.47	0.143

 Table: ERNM Model with Standard Errors Based on the Fisher

 Information

A Super-population Model for an Add Health High School

Figure: Model-Based Simulated High School

A⊒ ▶ ∢ ∃

A Super-population Model for an Add Health High School

Figure: Model Diagnostics

à

Ian Fellows Exponential-family Random Network Models (ERNM)

<->→ □→ < ≥→</>

< E

Logistic Regression on Substance Use: Naive model

	β	Std. Error	Z	p-value
Intercept	-1.70	0.44	-3.84	< 0.001
Male	1.18	0.57	2.09	0.037

Table: Simple Logistic Regression Model Ignoring Network Structure

伺 と く き と く き と

Logistic Regression on Substance Use: ERNM model

		Bootstrap	Asymptotic		
	η	Std. Error	Std. Error	Z	p-value
Mean Degree	-164.18	7.86	8.07	-20.36	< 0.001
Log Variance of Degree	20.35	8.85	9.07	2.24	0.025
Degree 0	4.01	0.45	0.44	9.12	< 0.001
Degree 1	2.25	0.37	0.35	6.44	< 0.001
Degree 2	0.74	0.36	0.35	2.08	0.038
Grade Homophily	3.85	0.46	0.46	8.41	< 0.001
+1 Grade Homophily	0.45	0.33	0.33	1.39	0.166
+2 Grade Homophily	-1.14	0.28	0.25	-4.50	< 0.001
+3 Grade Homophily	-0.58	0.39	0.38	-1.52	0.129
Sex Homophily	0.98	0.28	0.27	3.56	< 0.001
Substance Homophily	0.88	0.25	0.26	3.44	< 0.001
Intercept	-1.79	0.49	0.43	-4.11	< 0.001
Male	0.94	0.56	0.52	1.81	0.070

Table: ERNM Model Inference

回 と く ヨ と く ヨ と

Logistic Regression on Substance Use: homophily diagnostics

Figure: Substance Use Homophily Diagnostics. The values of the observed statistics are marked in red.

-

ERNM is a framework for inference about networks, including both the graph and the nodal characteristics.

回 と く ヨ と く ヨ と

3