
Set-Differencing Data Structures
for Social Network Analysis

David Eppstein

January 10, 2012



Based on work by...

David Eppstein
UCI/MURI

Mike Goodrich
UCI/MURI

George Varghese
UCSD

Frank Uyeda
UCSD

Michael Mitzenmacher
Harvard

Pierre Baldi
UCI

Joe Simons
UCI/MURI

From papers in:

WADS’07/TKDE’10
SIGCOMM 2011
Allerton 2011

and two works in progress



The basic problem:

Given multiple sets of
objects

Find a compact
“sketch” of each set
that allows us to:

• Find the elements
that belong to one
set but not both

• Estimate the
Hamming distance
between sets



Sets of what?

For social network analysis, use sets of edges in a network

a
b

c

d
e

f
g

h
i j

k
l

{ac, ad, bi, bj, cf,
ck, de, dh, eg, fh,
�, fk, hl, ik, jl}

Different networks with the same actors (e.g. as measured at
different times) give us different sets to be compared

We may also compare synthetic networks (time steps of an ERGM
simulation) or store more complex objects (ERGM features)



A (made up) example

Suppose the networks to be compared are the contacts among
people attending/teaching at a school, sampled daily



A (made up) example, continued

By calculating the level of similarity between networks for different
days (e.g. the Hamming distance of their sets of edges) we might
learn

• Whether some days of the week have different class schedules
than other days

• Whether there were any days in which the communication was
significantly disrupted from its typical pattern for that day

• What anomalous communication events occurred that did not
fit the typical pattern for that day



A naive solution

Why not store sets as
lists of elements, and
compare by checking
which elements belong
to each set?

• Linear time – too
slow to compare
many pairs of sets

• Not space-efficient
for storing many
similar sets Photo by Laura Padgett from Flickr



Another slightly-less-naive solution

Ok, then, what about storing the sequence of changes from one set
to the next?

• Makes additional assumptions that the sets form a time series
and that the most similar sets to each other are adjacent in
the time series

• Comparisons may be inefficient if many differences cancel
each other (short-term changes that are quickly reverted or
near-periodicity in the time series)



MinHash (Broder 1997)

Represent each set by the k smallest hash values of its elements

To estimate how similar two sets are, count how many hash values
they have in common

Fast, good for estimating large distances (proportional to set size)
but inaccurate for smaller distances, and doesn’t provide the
elements of the difference



Our solutions

For finding the elements in the set difference:

• Store each set in a data structure of size O∗(k), for arbitrary
but predetermined value k

• In O∗(k) time, either report all difference elements or
determine that there are more than k of them.

For estimating the size of the difference:

• Store each set in a data structure of size O∗(1)

• Compute (1 + ε)-approximation of Hamming distance in time
O∗(1), for arbitrary but predetermined value ε > 0.

* With high probability, omitting factors polynomial in log n, ε, and
the logarithm of the failure probability



Comparison of solutions

Suppose we have a data set with t networks, each having roughly
m edges, and that we want to estimate the distance between every
pair of networks

• The naive solution takes time O(mt2), and computes the
distance exactly

• Storing change logs may or may not be faster than the naive
solution, hard to analyze

• MinHash takes time O∗(mt + t2), close to the input size, but
computes the distances to within an additive error of ±εm,
accurate only for large distances

• Our solution takes time O∗(mt + t2) and computes the
distances to within a multiplicative factor of (1 ± ε)



How it works (I)

Bloom filter: array of O(k) bits representing a k-element set

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x, y, z}

w

Each set element is mapped by a hash function to a constant
number of array positions, which are set to one

An element not in the set is unlikely to have all positions nonzero



How it works (II)

Invertible Bloom filter: replace the bits of a Bloom filter by cells
holding three values:

• The number of elements mapped to that cell

• The sum of the elements mapped to that cell

• A checksum, the sum of hash values of elements mapped to
that cell

Each set element is likely to have a pure cell that only it maps to,
with element count one and with a valid checksum

An element not in the set is unlikely to appear to be in a pure cell



How it works (III)

Because the cell values in an invertible Bloom filter are additive
(sums of element values), we can add and subtract IBF’s

The difference of two IBF’s is itself an IBF representing the
symmetric difference of sets
(with some element counts −1 instead of +1)

If the difference has at most k elements, we can decode it by
looking for pure cells

If this decoding algorithm fails, then with high probability the
difference has size > k



How it works (IV)

To estimate the size of the difference of two sets to within a
(1 + ε) factor, even when the difference is large:

• Consistently partition the two sets into samples of
approximately n/2, n/4, n/8... elements, according to the
number of trailing zeros in a hash value for each element

• Store each sample in an IBF of capacity O(1/ε2); represent
each set by these IBFs of its samples

• Subtract the IBFs representing one set from the IBFs
representing the other set

• Use the densest sample for which the subtracted IBF can be
decoded to estimate the difference



Variations

We have also looked at the following related problems, less directly
relevant to social networks:

• Store sets on different computers across the internet, and
communicate their difference in an amount of communication
proportional to the difference (distributed version control)

• Combine these data structures with homomorphic encryption
to prevent eavesdroppers from being able to learn the sets

• Combine these data structures with geometric range searching
techniques to report or estimate the number of differences in
a geometrically-restricted subset of two input sets

• Transform DNA sequences into sets in a distance-preserving
way, in order to use these data structures for biological
sequence comparison



Conclusions

Data sets consisting of many networks on the same set of actors
can be stored efficiently using very little storage per set, but still
allowing useful information about the comparison between two of
the networks to be extracted

Similar techniques have been applied to a wide class of other
problems (with sets of objects other than network edges) and have
been successfully implemented

Implications for social network analysis look promising but are still
speculative


