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SMALL-WORLD PHENOMENON
• Consider a social network
• Milgram experiment [Milgram, 1967]

• Give letter to random person

• Conclusions
• Short paths exist between all people

• ... and people are able to find these paths

• Select a random target
• Person should give letter to acquaintence

• “six degrees of separation”
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MAIN QUESTIONS
• Is this feasible?
• Assume people use a simple

category-based routing algorithm
• Under what conditions of a network and

set of categories does simple routing work?
• How much does an individual need to

know for this to work?



DEFINITIONS & RESULTS
PART II



SOME NOTATION



SOME NOTATION
• Ingredients



SOME NOTATION
• Ingredients
• A set U of n objects



SOME NOTATION
• Ingredients
• A set U of n objects



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G
• G[C] : subgraph induced by C



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G
• G[C] : subgraph induced by C



SOME NOTATION
• Ingredients
• A set U of n objects
• A set E of relations, resulting in a graph

G = (U,E)
• A set S ⊆ 2U of categories

• Basic concepts
• diam(G) : longest shortest path in G
• G[C] : subgraph induced by C



SIMPLE ROUTING



SIMPLE ROUTING
• Algorithm



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|

• Rationale



SIMPLE ROUTING
• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|

• Rationale
• Simplest interpretation of

“category-based” routing
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• Algorithm
• Give message to neighbour who shares

most categories with the target
• maxu:(s,u)∈E |{C : s /∈ C ∧ u, t ∈ C}|

• Rationale
• Simplest interpretation of

“category-based” routing
• Requires only local knowledge about

neighbours and target
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INTERNALLY CONNECTED
• Definition

• Rationale
• ∀C : G[C] is connected

• Seems like a natural assumption

• Makes it a lot easier to reason about
simple routing

• The network is connected inside every
category
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SHATTERED
• Definition
• Everyone has a neighbour who shares a

new category with everyone else

• Rationale
• ∀s, t∃u,C : (s, u) ∈ E ∧ s /∈ C ∧ u, t ∈ C

• Neccesary condition for routing to work
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• Definition
• Largest number of categories anyone is in
• mem(S) = maxu∈U |{C ∈ S | u ∈ C}|

• Rationale
• Captures the “cognitive load” of people
• We expect the membership dimension to

be small
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RESULTS
• Simple routing works?
• yes→ shattered
• internally connected on spanning tree and

shattered → yes

• Bounds on membership dimension
• ∃G∃S : yes ∧mem(S) = 1
• ∀G∀S : yes→ mem(S) ≥ diam(G)
• ∀G∃S : yes∧mem(S) ≤ (diam(G)+log n)2

• ∀S∃G : no
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• Start with arbitrary graph G
• Compute spanning tree T of G
• diam(T ) ≤ 2diam(G)

• Embed T in binary tree B
• diam(B) ≤ diam(T ) + log n
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CONCLUSION
• Main result
• For any given graph, there exists a set of

categories of low membership dimension
that makes simple routing work

• Theoretical evidence that category-based
routing is a feasible explanation of
Milgram’s experiment
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OPEN QUESTIONS
• Close the gap
• Membership dimension is between

diam(G) and (diam(G) + log n)2

• Real world data
• To what extent are real data sets shattered

and internally connected?

• Slightly less simple routing
• Can the routing strategy be made stronger

in a fair way?
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