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The Data

 High school interactions
(McFarland 2001)

650 classroom sessions

Covariates about class
● e.g. subject, teachers

Covariates about individuals
● e.g. race, extracurriculars



The Data

 Nodes arranged (roughly) 
according to seating chart

Teacher interactions common

Local interactions common



Goals
Describe how the probability of each interaction varies 
with a set of covariates

Pull apart relative contribution of:
● actor covariates
● current context
● conversational dynamics

Make inferences about event sequences:
● within classroom sessions
● across classroom sessions

Long-term question:
● Given covariates about a classroom,

can we predict aspects of the dynamics?
(e.g. amount of reciprocity in interactions)



Notation

Rate/hazard at time t of the interaction initiated by 
individual i and directed towards j

Covariates about interaction (i,j) at time t

● Hazards depend on past history and covariates.
● Include rates that individuals "broadcast" to entire 

classroom.

Use a (positive) linear predictor to model the hazards:



Model specification:
Sender/recipient effects:

● race
● gender
● is_teacher

"Autocorrelation":
● recency (sender/receiver)

(e.g. rank of individual in 
list of most recent)

● current event and 
previous event are both 
(teacher,broadcast)

Event effects:
● teacher_student 
● teacher_broadcast
● are_friends
● number_shared_activities

Participation shifts (Gibson 2003)
● Reciprocity (AB-BA)
● Turn taking (AB-BY)
● Others...

"Context" of event:
● Lecture 
● Silent time
● Groupwork



Model

Assume             is constant between events.

\displaystyle\prod_{k=1}^M \lambda_{i_k,j_k}(t_k) \prod_{ij} 
\exp\{ - (t_k - t_{k-1}) \lambda_{ij}(t_k)\}

time



Model

Full likelihood for history of events:

\displaystyle\prod_{k=1}^M \lambda_{i_k,j_k}(t_k) \prod_{ij} 
\exp\{ - (t_k - t_{k-1}) \lambda_{ij}(t_k)\}



Model

Full likelihood for history of events:

\displaystyle\prod_{k=1}^M \lambda_{i_k,j_k}(t_k) \prod_{ij} 
\exp\{ - (t_k - t_{k-1}) \lambda_{ij}(t_k)\}



Model

p(A | \beta) = \displaystyle\prod_{k=1}^M \frac
{\exp\{{\beta^T x_{a_k}(t_k)}\}}
{\displaystyle\sum_{a' \in R}\exp\{\beta^T x_{a'}
(t_k)\}}

Hazard of k'th observed event

Full likelihood for history of events:



Model

p(A | \beta) = \displaystyle\prod_{k=1}^M \frac
{\exp\{{\beta^T x_{a_k}(t_k)}\}}
{\displaystyle\sum_{a' \in R}\exp\{\beta^T x_{a'}
(t_k)\}}

Survival function for each event, 
representing the fact that no 
event occurred between event 
k-1 and event k

Full likelihood for history of events:



Model

Mapping to standard survival analysis methods:
● Risk set: all possible interactions among individuals
● Covariates are time-varying (and dependent on all 

previous events)
● Each event: 

○ one observed failure time             
○ times for other events are censored

Alternative perspectives: 
● Continuous time process with N^2 states



Modeling Several Sequences

Parameter estimation:
● Can use standard techniques (e.g. Newton-Rapheson) to 

obtain maximum likelihood estimates

Problem: 
● Some event sequences have few events 
● Some effects may have few relevant events

Today's approach: 
● Share information across classroom sessions via a 

hierarchical model



Modeling Event Sequences

Event model parameters

Event covariates

Observed event sequence 
for session j



Multilevel Relational Event Model

Event model parameters

Upper-level parameters

Event covariates

Observed event sequences 
for J sessions



Multilevel Relational Event Model

Event covariates

Observed event sequences 
for J sessions



Inference

Iterated conditional modes (ICM):
● Fit individual models to obtain beta for each session that 

maximizes the log posterior
● Obtain estimates for the upper-level model theta 

conditioned on the betas
● Iterate using theta as initial estimates for each beta.

Draw samples from posterior centered at mode via MH.



Hierarchical Model:

Sender

Receiver

Event-level

Dynamics



Shrinkage



Posterior-predictive checks: Degree



Posterior-predictive checks: "P-shifts"

Comparing p-shift statistics of observed data and data 
simulated using the parameter estimates for two 
classroom sessions.



Takeaways and future directions
Proof of concept:

● Can model event data using actor covariates and 
conversational dynamics

● Hierarchical modeling useful in this setting
● Can begin to ask questions at the network level: 

use models of observed networks to generalize to new 
networks

How do dynamics depend on the "context" of event?
● Lecture, Silent time, Groupwork

Multilevel modeling with session-level covariates:
● racial mixture
● survey results about the classroom session



Takeaways and future directions

Predictive evaluation:
● Predict out-of-sample events within a classroom
● Predict out-of-sample session information

"Big Data":
● Likelihood computations are intensive.
● Small group dynamics (~20 actors), 

but many networks (~280-600), many effects (~10-30)

What does the model predict?
● Simulate ramifications (like in agent-based modeling)



Thank you

 



Multilevel Relational Event Model

Event model parameters

Session-level covariates

Event covariates

Observed event sequences 
for J sessions



Model

Partial likelihood for sequence of events A:

For each event, k:  P( next event is a=(i,j)  | some event occurs )

Alternatively, can consider a full likelihood where inter-arrival 
times have a parametric form (e.g. exponential).

p(A | \beta) = \displaystyle\prod_{k=1}^M \frac
{\exp\{{\beta^T x_{a_k}(t_k)}\}}
{\displaystyle\sum_{a' \in R}\exp\{\beta^T x_{a'}
(t_k)\}}



Multilevel Relational Event Model



Outline

Data

Goals

Model
● Likelihood
● Specification
● Hierarchical extension
● Inference

Preliminary results

Future directions


