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Egocentric Counting Processes

I Goal: Model a dynamically evolving network

I Following standard recurrent event theory, place a counting
process Ni (t) on node i , i = 1, . . . , n.

I Ni (t) counts the number of “events” involving the ith node.

I Combine Ni (t) gives a multivariate counting process
N(t) = (N1(t), . . . ,Nn(t)).

I Genuinely multivariate; no assumption about the
independence of Ni (t).

I “Egocentric” using Carter’s terminology because i are nodes,
not node pairs.



Modeling of Citation Networks

I New papers join the network over time.

I At arrival, a paper cites others that are already in the network.

I Main dynamic development is the number of citations
received.

I Thus, Ni (t) equals the cumulative number of citations to
paper i at time t.

I “Egocentric” means Ni (t) is ascribed to nodes. Alternative
“relational” framework, using N(i ,j)(t), is not appropriate
here: Relationship (i , j) is at risk of an event (citation) only at
a single instant in time.

I Further discussion of general time-varying network modeling
ideas given by Butts (2008) and Brandes et al (2009).



The Doob-Meyer Decomposition

Each Ni (t) is nondecreasing in time, so N(t) may be considered a
submartingale; i.e., it satisfies

E [N(t) | past up to time s] ≥ N(s) for all t > s.

Any submartingale may be uniquely decomposed as

N(t) =

∫ t

0
λ(s) ds + M(t) :

I λ(t) is the “signal” at time t (this intensity function is what
we will model)

I M(t) is a continuous-time Martingale.
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Modeling the Intensity Process

The intensity process for node i is given by

λi (t|Ht−) = Yi (t)α0(t) exp
(
β>si (t)

)
,

where

I Yi (t) = I (t > tarr
i ) is the “at-risk indicator”

I Ht− is the past of the network up to but not including time t

I α0(t) is the baseline hazard function

I β is the vector of coefficients to estimate

I si (t) = (si1(t), . . . , sip(t)) is a p-vector of statistics for paper i
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Preferential Attachment Statistics

For each cited paper j already in the network. . .

I First-order PA: sj1(t) =
∑N

i=1 yij(t). “Rich get richer” effect

I Second-order PA: sj2(t) =
∑

i 6=k yki (t)yij(t).
Effect due to being cited by well-cited papers

I Recency-based first-order PA (we take Tw = 180 days):
sj3(t) =

∑N
i=1 yij(t)I (t − tarr

i < Tw ).
Temporary elevation of citation intensity after recent citations

j

Statistics in red are time-dependent. Others are fixed once j joins
the network.



Triangle Statistics

For each cited paper j already in the network. . .

I “Seller” statistic: sj4(t) =
∑

i 6=k yki (t)yij(t)ykj(t).

I “Broker” statistic: sj5(t) =
∑

i 6=k ykj(t)yji (t)yki (t).

I “Buyer” statistic: sj6(t) =
∑

i 6=k yjk(t)yki (t)yji (t).

A
Seller

B

C

Broker

Buyer

Statistics in red are time-dependent. Others are fixed once j joins
the network.



Out-Path Statistics

For each cited paper j already in the network. . .

I First-order out-degree (OD): sj7(t) =
∑N

i=1 yji (t).

I Second-order OD: sj8(t) =
∑

i 6=k yjk(t)yki (t).

j

Statistics in red are time-dependent. Others are fixed once j joins
the network.



Topic Modeling Statistics

Additional statistics, using abstract text if available, as follows:

I An LDA model (Blei et al, 2003) is learned on the training set.

I Topic proportions θ generated for each training node.

I LDA model also used to estimate topic proportions θ for each
node in the test set.

I We construct a vector of similarity statistics:

sLDA
j (tarr

i ) = θi ◦ θj ,

where ◦ denotes the element-wise product of two vectors.

I We use 50 topics; each sj component has a corresponding β.



Partial Likelihood

Recall: The intensity process for node i is

λi (t|Ht−) = Yi (t)α0(t) exp
(
β>si (t)

)
.

If α0(t) ≡ α0(t,γ), we may use the “local Poisson-ness” of the
multivariate counting process to obtain (and maximize) a
likelihood function (details omitted).

However, we treat α0 as a nuisance parameter and take a partial
likelihood approach as in Cox (1972): Maximize

L(β) =
m∏

e=1

exp
(
β>sie (te)

)
∑n

i=1 Yi (te) exp
(
β>si (te)

) =
m∏

e=1

exp
(
β>sie (te)

)
κ(te)

Trick: Write κ(te) = κ(te−1) + ∆κ(te), then
optimize ∆κ(te) calculation.
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Data Sets We Analyzed

Three citation network datasets from the physics literature:

1. APS: Articles in Physical Review Letters, Physical Review, and
Reviews of Modern Physics from 1893 through 2009. Timestamps
are monthly for older, daily for more recent.

2. arXiv-PH: arXiv high-energy physics phenomenology articles from
Jan. 1993 to Mar. 2002. Timestamps are daily.

3. arXiv-TH: High-energy physics theory articles spanning from
January 1993 to April 2003. Timestamps are continuous-time
(millisecond resolution). Also includes text of paper abstracts.

Papers Citations Unique Times
APS 463,348 4,708,819 5,134
arXiv-PH 38,557 345,603 3,209
arXiv-TH 29,557 352,807 25,004



Three Phases

1. Statistics-building phase: Construct network history and
build up network statistics.

2. Training phase: Construct partial likelihood and estimate
model coefficients.

3. Test phase: Evaluate predictive capability of the learned
model.

Statistics-building is ongoing even through the training and test
phases. The phases are split along citation event times.

Number of unique citation
event times in the three phases:

Building Training Test
APS 4,934 100 100
arXiv-PH 2,209 500 500
arXiv-TH 19,004 1000 5000



Average Normalized Ranks

I Compute “rank” for each true citation among sorted
likelihoods of each possible citation.

I Normalize by dividing by the number of possible citations.

I Average of the normalized ranks of each observed citation.

I Lower rank indicates better predictive performance.
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I Batch sizes are 3000, 500, 500, respectively.

I PA: pref. attach only (s1(t)); P2PT: s1, . . . , s8 except s3;

I P2PTR180: s1, . . . , s8; LDA: LDA stats only



Recall Performance

Recall: Proportion of true citations among largest K likelihoods.
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Coefficient Estimates for LDA + P2PTR180 Model

Statistics Coefficients (β)

s1 (PA) 0.01362

s2 (2nd PA) 0.00012

s3 (PA-180) 0.02052

s4 (Seller) -0.00126

s5 (Broker) -0.00066

s6 (Buyer) -0.00387

s7 (1st OD) 0.00090

s8 (2nd OD) 0.02052

A
Seller

B

C

Broker

Buyer

D
B

C
Diverse seller effect:
D more likely cited than A.

A
Seller

B

C

Broker

Buyer

A
B

E
Diverse buyer effect:
E more likely cited than C .
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Why Such Long Building Phases?

I The lengthy building phase mitigates truncation effects at the
beginning of network formation and effects of severely
grouped event times

I Training and test windows still cover a substantial period of
time (e.g. 2.5 years for APS)

I Performance is relatively invariant to the size of the training
windows. We achieved essentially the same results using
windows of size 2000 and 5000 for arXiv-TH.

Number of unique citation
event times in the three phases:

Building Training Test
APS 4,934 100 100
arXiv-PH 2,209 500 500
arXiv-TH 19,004 1000 5000



Average Partial Loglikelihood

I Compute average of the partial likelihoods for each citation
event.
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I Batch sizes are 3000, 500, 500, respectively.

I PA: pref. attach only (s1(t)); P2PT: s1, . . . , s8 except s3;

I P2PTR180: s1, . . . , s8; LDA: LDA stats only
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