#### Approximate Sampling for Binary Discrete Exponential Families, with Fixed Execution Time and Quality Guarantees

#### **Carter T. Butts**

Department of Sociology and

Institute for Mathematical Behavioral Sciences

University of California, Irvine buttsc@uci.edu

MURI AHM, 6/3/11

This work was supported in part by ONR award N00014-08-1-1015 and NSF award BCS-0827027.

Carter T. Butts, MURI AHM 6/3/11 - p. 1/2

#### Exponential Families on Binary Vectors

- Let  $Y = Y_1, \ldots, Y_N$  be a finite vector of binary-valued random variables with joint support  $\mathcal{Y}_N$
- $\blacktriangleright$  Wlg, we may write the joint pmf of Y in discrete exponential family form as

$$\Pr\left(Y = y \left|\theta\right.\right) = \frac{\exp\left[\theta^T t\left(y\right)\right]}{\sum_{y' \in \mathcal{Y}_N} \exp\left[\theta^T t\left(y'\right)\right]} I_{\mathcal{Y}_N}(y) \tag{1}$$

- $\triangleright t : \mathcal{Y}_N \mapsto \mathbb{R}^p$  is a vector of sufficient statistics,  $\theta \in \mathbb{R}^p$  is a parameter vector, and  $I_{\mathcal{Y}_N}$  is an indicator function for membership in the support
- ▷ In general, cannot compute due to intractability of  $\sum_{y' \in \mathcal{Y}_N} \exp \left[\theta^T t(y')\right]$
- ► Useful feature of above full conditionals easily obtained:

$$\Pr\left(Y_{i}=1 \mid \theta, Y_{i}^{c}=y_{i}^{c}\right) = \left[1 + \exp\left[\theta^{T}\left[t\left(y_{i}^{-}\right) - t\left(y_{i}^{+}\right)\right]\right]\right]^{-1}$$
(2)

▷  $Y_i^c$  refers to all elements of Y other than the *i*th,  $Y_i^+$  refers to the vector Y w/*i*th entry is set to 1, and  $Y_i^-$  refers to Y w/*i*th entry set to 0



• Note that we may also write Y's joint distribution in sequential form:

$$\Pr(Y = y | \theta) = \Pr(Y_1 = y_1 | \theta) \Pr(Y_2 = y_2 | \theta, Y_1 = y_1) \dots \times \Pr(Y_N = y_N | \theta, Y_1 = y_1, \dots, Y_{N-1} = y_{N-1})$$
(3)

But what are these "partial conditionals" in the sequence?

• Let  $Y_{\leq i}^c = Y_1, \ldots, Y_{i-1}$ . By definition,

$$\Pr\left(Y_{i} = 1 \mid \theta, Y_{$$

So the "partial conditionals" are convex combinations of the full conditionals for Y<sub>i</sub>
 And, as noted, those full conditionals are often easy to work with....

# Bounding the Partial Conditionals

- An implication of Eq 4: full conditionals can be used to bound partial conditionals (a la Butts (2010))
  - $\triangleright \min_{y' \in \mathcal{Y}_N : y_{<i}^c = y_{<i}^c} \Pr(Y_i = y_i | Y_i^c = y_i'^c) \le \Pr(Y_i = y_i | Y_{<i} = y_{<i})$
  - $\triangleright \max_{y' \in \mathcal{Y}_N : y_{<i}^c = y_{<i}^c} \Pr(Y_i = y_i | Y_i^c = y_i'^c) \ge \Pr(Y_i = y_i | Y_{<i} = y_{<i})$
  - $\triangleright$  Minima/maxima are over all sequences preserving outcomes prior to  $Y_i$
  - Follows immediately from convexity condition
- ▶ Using Eq 2, we can easily express the bounds in logit form
  - Define the following:

$$\diamond \alpha_{i} \leq \min_{y' \in \mathcal{Y}_{N}: y_{\leq i}^{c} = y_{\leq i}^{c}} \left[ 1 + \exp\left[\theta^{T}\left[t\left(y_{i}^{\prime-}\right) - t\left(y_{i}^{\prime+}\right)\right]\right] \right]^{-1}$$

$$\diamond \beta_{i} \equiv \Pr(Y_{i} = 1 | Y_{\leq i} = y_{\leq i})$$

$$\diamond \gamma_{i} \geq \max_{y' \in \mathcal{Y}_{N}: y_{\leq i}^{\prime c} = y_{\leq i}^{c}} \left[ 1 + \exp\left[\theta^{T}\left[t\left(y_{i}^{\prime-}\right) - t\left(y_{i}^{\prime+}\right)\right]\right] \right]^{-1}$$
There is a conductive theorem with the partial condition

▷ Then  $\alpha_i \leq \beta_i \leq \gamma_i$  (i.e.,  $\alpha$  and  $\gamma$  sandwich the partial conditionals)

## From Bounds to Simulation

- Simple, exact, and useless method of simulating a draw y from Y
  - $\triangleright$  Draw *r* from  $R = R_1, \ldots, R_N$ , w/ $R_i \sim U(0, 1)$

▷ For  $i \in 1, ..., N$ , let  $y_i = 1$  if  $r_i < \Pr(Y_i = 1 | \theta, Y_{<i}^c = y_{<i}^c) = \beta_i$ , else  $y_i = 0$ 

• Problem: we don't know  $\beta_i!$  But sometimes, we don't have to...

 $\triangleright$  If  $r_i < \alpha_i$ , then  $r_i < \beta_i$ , so we know that  $y_i = 1$ 

 $\triangleright$  If  $r_i \geq \gamma_i$ , then  $r_i \geq \beta_i$ , so we know that  $y_i = 0$ 

 $\triangleright~$  In these cases, we say that  $lpha,\gamma$  "fix"  $y_i$ 

Further observation: when  $y_i$  is "fixed," this restricts later  $\alpha, \gamma$  values

- $\triangleright \ \alpha \ {\rm and} \ \beta \ {\rm can} \ {\rm only}$  "tighten" as more values are fixed
- $\triangleright$  "Fixation cascade:" fixing  $y_i$  tightens bounds for  $y_{i+k}$ , fixing it (which may in turn fix others)

Sometimes, will fail; may have to get out and push

► This suggests an algorithm....

### The "Bound Sampler"

- Basic algorithm for approximate simulation of  $Y \ddagger$ 
  - $\triangleright$  For  $i \in 1, \ldots, N$ , perform the following steps:
    - $\diamond$  Initialization: compute  $\alpha_i, \gamma_i$  given  $y_{< i}, \theta$
    - $\diamond$  *Fixation*: if  $r_i < \alpha_i$ , set  $y_i = 1$ ; if  $r_i \ge \gamma_i$ , set  $y_i = 0$
    - ♦ *Perturbation*: if  $\alpha_i \leq r_i < \gamma_i$ , then "perturb" by drawing  $\tau \sim U(\alpha_i, \gamma_i)$  and set  $y_i = I(r_i < \tau_i)$  †
  - $\triangleright$  Resulting y vector is an approximate draw from Y
- Bound sampler has some interesting features
  - Draws are independent (unlike MCMC)
  - ▷ Worst-case time complexity fixed at O(Nf(N)), where f(N) is complexity of the initialization step (can be optimal, if f(N) constant)
  - $\triangleright$  Can obtain quality guarantees: if  $y_i$  is fixed initially or by an unperturbed cascade, it *must* equal its "true" value!
    - $\diamond~$  "True" means wrt a coupled exact sampler with same R
    - $\diamond$  Quality is a lower bound: unfixed  $y_i$  might still be correct, and fixed  $y_i$  certainly correct †



#### Application to Network Simulation

Bound sampler can easily be used to simulate network processes

- Write network model in ERG form (in terms of adjacency matrix)
- Vectorize" the adjacency matrix via row or column concatenation
- Apply the bound sampler to the resulting vector
- Potential advantages
  - Fixed execution time (and can be very fast)
  - > Unsupervised (e.g., no convergence diagnostics)
  - > Quality guarantees

#### Potential drawbacks

- Fast implementation can require smart data structures (need cheap initialization)
- If it doesn't work well, you're screwed (but could use smarter perturbation heuristics); can't trade time for quality

# Example: 9/11 PATH Radio Communications



#### Example: Hunter and Handcock Lazega Model (Uniform Perturbations)







Bound Sampler

MCMC

#### Example: Hunter and Handcock Lazega Model (Pseudo-marginal Perturbations)



Carter T. Butts, MURI AHM 6/3/11 - p. 11/2



Bound sampler: an interesting direction for ERG simulation

- Fixed execution time (can be worst-case optimal)
- ▷ Ex ante and ex post quality guarantees
- Unsupervised execution (no convergence checking)

#### Ongoing issues

- ▷ When is it good enough for particular applications?
- Better perturbation tricks (the real key to success!)
- Smart implementation for typical graph statistics (min/max tracking)



#### Thanks for your attention!

# Further Issues: Quality Assessment

- Using  $\beta$  to threshold R yields an exact draw from Y; the sampler approximates this using the  $(\alpha, \gamma)$  bounds on  $\beta$ , plus perturbations (when bounds are insufficient)
- ► Let y<sup>t</sup>|r be the unique draw from Y corresponding to realization r of R; the "quality' of draw y|r from the bound sampler is the similarity of y and y<sup>t</sup>
- ► Simple measure:  $Q(y) = (N D_H(y, y^t))/N$ , where  $D_H$  is the Hamming distance
  - ▷ Don't know  $D_H(y, y^t)$ , but can create an upper bound by treating all  $y_i$  not fixed by a perturbation-free cascade as incorrect; this give an ex post lower bound on Q
  - ▷ Computing unconditional values for  $(\alpha_i, \gamma_i)$  leads to the ex ante lower bound on  $\mathbf{E}Q(Y)$ ,  $1/N \sum_{i=1}^{N} (\gamma_i - \alpha_i)$
- Can also answer more nuanced questions about  $y^t$  using y
  - > Considering all y' consistent with the fixed values of y allows exact bounds on all properties of  $y^t$  (but perhaps loose ones!)
  - Given multiple draws, can bound expectations for properties of Y by expectations on upper/lower bounds from bound sampler draws
- Note: Q(y) is not independent of y<sup>t</sup>! Resampling until one gets a high-quality draw will introduce bias! (No free lunch, alas....) [Return]

# **Further Issues: Perturbation**

- When we "perturb" the algorithm, we are really estimating the unknown  $\beta_i$ 
  - $\triangleright\,$  The threshold,  $\tau,$  is our "estimator"
- ► By default, select uniformly between bounds, but can do better
  - ▷ Clearly,  $\mathbf{E}\beta = \sum_{i=1}^{N} Y_i / N$ , so want to favor low/high  $\tau$  when Y is sparse/dense
  - ▷ Taking an initial approximation to the pdf of  $\beta$  as a prior, can update based on  $(\alpha, \gamma)$  and draw  $\tau$  from the posterior
    - Diffuse beta distribution centered on expected density seems to be an easy improvement on the uniform
  - ▷ In theory, could use better approximations that take  $y_{<i}$  into account; as  $\tau \to \beta_i$ , y|r approaches its exact value
    - ♦ Have had good luck w/"pseudo-marginalization" method to approximate  $\beta_i$  by averaging full conditionals over a baseline Bernoulli model
- ► This is the principal route for improving simulation quality clever ideas are welcome!

[Return]



```
1: for i in 1, ..., N do
         Set \alpha'_i := \min_{y' \in \mathcal{Y}_N : y'_{< i} = y_{< i}} \Pr\left(Y_i = 1 \left| \theta, Y_i^c = y'_i^c\right.\right)
  2:
         Set \gamma'_i := \max_{y' \in \mathcal{Y}_N : y'_{< i} = y_{< i}} \Pr\left(Y_i = 1 \left| \theta, Y_i^c = y'_i^c\right.\right)
  3:
         Draw r_i from U(0,1)
  4:
         if r_i < \alpha'_i then
  5:
            Set y_i = 1
  6:
         else if r_i \geq \gamma'_i then
  7:
             Set y_i = 0
  8:
         else
  9:
             Draw \tau from U(\alpha'_i, \beta'_i)
10:
11:
            if r_i < \tau then
            Set y_i := 1
12:
            else
13:
                Set y_i := 0
14:
             end if
15:
         end if
16:
17: end for
18: return y
[Return]
```

#### 1 References

Butts, C. T. (2010). Bernoulli graph bounds for general random graphs. Technical Report MBS 10-07, Irvine, CA.