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Exponential Families on
Binary Vectors

◮ Let Y = Y1, . . . , YN be a finite vector of binary-valued random variables with
joint support YN

◮ Wlg, we may write the joint pmf of Y in discrete exponential family form as

Pr (Y = y |θ ) =
exp

[

θT t (y)
]

∑

y′∈YN
exp [θT t (y′)]

IYN
(y) (1)

⊲ t : YN 7→ R
p is a vector of sufficient statistics, θ ∈ R

p is a parameter vector, and IYN
is an

indicator function for membership in the support

⊲ In general, cannot compute due to intractability of
P

y′∈YN
exp

ˆ

θT t (y′)
˜

◮ Useful feature of above – full conditionals easily obtained:

Pr (Yi = 1 |θ, Y c
i = yc

i ) =
[

1 + exp
[

θT
[

t
(

y−
i

)

− t
(

y+

i

)]]]−1
(2)

⊲ Y c
i refers to all elements of Y other than the ith, Y +

i refers to the vector Y w/ith entry is set

to 1, and Y −

i refers to Y w/ith entry set to 0
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A Sequential Take

◮ Note that we may also write Y ’s joint distribution in sequential form:

Pr (Y = y |θ ) = Pr (Y1 = y1 |θ ) Pr (Y2 = y2 |θ, Y1 = y1 ) . . .

× Pr (YN = yN |θ, Y1 = y1, . . . , YN−1 = yN−1 ) (3)

⊲ But what are these “partial conditionals” in the sequence?

◮ Let Y c
<i = Y1, . . . , Yi−1. By definition,

Pr (Yi = 1 |θ, Y c
<i = yc

<i ) =
∑

y′∈Yn:y′c
<i

=yc
<i

Pr
(

Yi = 1
∣

∣θ, Y c
i = y′c

i

)

Pr
(

Y c
i = y′c

i |θ, Y
c
<i = yc

<i

)

. (4)

⊲ So the “partial conditionals” are convex combinations of the full conditionals for Yi

⊲ And, as noted, those full conditionals are often easy to work with....
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Bounding the Partial
Conditionals

◮ An implication of Eq 4: full conditionals can be used to bound partial
conditionals (a la Butts (2010))

⊲ miny′∈YN :y′c
<i

=yc
<i

Pr(Yi = yi|Y
c

i = y′c
i ) ≤ Pr(Yi = yi|Y<i = y<i)

⊲ maxy′∈YN :y′c
<i

=yc
<i

Pr(Yi = yi|Y
c

i = y′c
i ) ≥ Pr(Yi = yi|Y<i = y<i)

⊲ Minima/maxima are over all sequences preserving outcomes prior to Yi

⊲ Follows immediately from convexity condition

◮ Using Eq 2, we can easily express the bounds in logit form

⊲ Define the following:

⋄ αi ≤ miny′∈YN :y′c
<i

=yc
<i

h

1 + exp
h

θT
h

t
“

y′−

i

”

− t
“

y′+

i

”iii−1

⋄ βi ≡ Pr(Yi = 1|Y<i = y<i)

⋄ γi ≥ maxy′∈YN :y′c
<i

=yc
<i

h

1 + exp
h

θT
h

t
“

y′−

i

”

− t
“

y′+

i

”iii−1

⊲ Then αi ≤ βi ≤ γi (i.e., α and γ sandwich the partial conditionals)
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From Bounds to Simulation

◮ Simple, exact, and useless method of simulating a draw y from Y

⊲ Draw r from R = R1, . . . , RN , w/Ri ∼ U(0, 1)

⊲ For i ∈ 1, . . . , N , let yi = 1 if ri < Pr(Yi = 1|θ, Y c
<i = yc

<i) = βi, else yi = 0

◮ Problem: we don’t know βi! But sometimes, we don’t have to...

⊲ If ri < αi, then ri < βi, so we know that yi = 1

⊲ If ri ≥ γi, then ri ≥ βi, so we know that yi = 0

⊲ In these cases, we say that α, γ “fix” yi

◮ Further observation: when yi is “fixed,” this restricts later α, γ values

⊲ α and β can only “tighten” as more values are fixed

⊲ “Fixation cascade:” fixing yi tightens bounds for yi+k, fixing it (which may in turn fix others)

⊲ Sometimes, will fail; may have to get out and push

◮ This suggests an algorithm....
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The “Bound Sampler”
◮ Basic algorithm for approximate simulation of Y †

⊲ For i ∈ 1, . . . , N , perform the following steps:

⋄ Initialization: compute αi, γi given y<i, θ

⋄ Fixation: if ri < αi, set yi = 1; if ri ≥ γi, set yi = 0

⋄ Perturbation: if αi ≤ ri < γi, then “perturb” by drawing τ ∼ U(αi, γi) and set
yi = I(ri < τi) †

⊲ Resulting y vector is an approximate draw from Y

◮ Bound sampler has some interesting features

⊲ Draws are independent (unlike MCMC)

⊲ Worst-case time complexity fixed at O(Nf(N)), where f(N) is complexity of the
initialization step (can be optimal, if f(N) constant)

⊲ Can obtain quality guarantees: if yi is fixed initially or by an unperturbed cascade, it must
equal its “true” value!

⋄ “True” means wrt a coupled exact sampler with same R

⋄ Quality is a lower bound: unfixed yi might still be correct, and fixed yi certainly correct †
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Sampling Process, Illustrated

0

1
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Application to Network
Simulation

◮ Bound sampler can easily be used to simulate network processes

⊲ Write network model in ERG form (in terms of adjacency matrix)

⊲ “Vectorize” the adjacency matrix via row or column concatenation

⊲ Apply the bound sampler to the resulting vector

◮ Potential advantages

⊲ Fixed execution time (and can be very fast)

⊲ Unsupervised (e.g., no convergence diagnostics)

⊲ Quality guarantees

◮ Potential drawbacks

⊲ Fast implementation can require smart data structures (need cheap initialization)

⊲ If it doesn’t work well, you’re screwed (but could use smarter perturbation

heuristics); can’t trade time for quality
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Example: 9/11 PATH Radio
Communications
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Example: Hunter and Handcock Lazega
Model (Uniform Perturbations)
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Example: Hunter and Handcock Lazega
Model (Pseudo-marginal Perturbations)

Carter T. Butts, MURI AHM 6/3/11 – p. 11/16



Conclusion

◮ Bound sampler: an interesting direction for ERG simulation
⊲ Fixed execution time (can be worst-case optimal)

⊲ Ex ante and ex post quality guarantees

⊲ Unsupervised execution (no convergence checking)

◮ Ongoing issues
⊲ When is it good enough for particular applications?

⊲ Better perturbation tricks (the real key to success!)

⊲ Smart implementation for typical graph statistics (min/max tracking)
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The End

Thanks for your attention!
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Further Issues: Quality
Assessment

◮ Using β to threshold R yields an exact draw from Y ; the sampler approximates this
using the (α, γ) bounds on β, plus perturbations (when bounds are insufficient)

◮ Let yt|r be the unique draw from Y corresponding to realization r of R; the “quality’ of
draw y|r from the bound sampler is the similarity of y and yt

◮ Simple measure: Q(y) = (N − DH(y, yt))/N , where DH is the Hamming distance

⊲ Don’t know DH(y, yt), but can create an upper bound by treating all yi not fixed by a
perturbation-free cascade as incorrect; this give an ex post lower bound on Q

⊲ Computing unconditional values for (αi, γi) leads to the ex ante lower bound on EQ(Y ),

1/N
PN

i=1
(γi − αi)

◮ Can also answer more nuanced questions about yt using y

⊲ Considering all y′ consistent with the fixed values of y allows exact bounds on all properties
of yt (but perhaps loose ones!)

⊲ Given multiple draws, can bound expectations for properties of Y by expectations on

upper/lower bounds from bound sampler draws

◮ Note: Q(y) is not independent of yt! Resampling until one gets a high-quality draw
will introduce bias! (No free lunch, alas....) [Return]
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Further Issues: Perturbation
◮ When we “perturb” the algorithm, we are really estimating the unknown βi

⊲ The threshold, τ , is our “estimator”

◮ By default, select uniformly between bounds, but can do better

⊲ Clearly, Eβ =
PN

i=1
Yi/N , so want to favor low/high τ when Y is sparse/dense

⊲ Taking an initial approximation to the pdf of β as a prior, can update based on (α, γ) and
draw τ from the posterior

⋄ Diffuse beta distribution centered on expected density seems to be an easy improvement
on the uniform

⊲ In theory, could use better approximations that take y<i into account; as τ → βi, y|r

approaches its exact value

⋄ Have had good luck w/“pseudo-marginalization” method to approximate βi by averaging
full conditionals over a baseline Bernoulli model

◮ This is the principal route for improving simulation quality – clever ideas are welcome!

[Return]
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Sampling Algorithm
1: for i in 1, . . . , N do
2: Set α′

i := miny′∈YN :y′

<i
=y<i

Pr
`

Yi = 1
˛

˛θ, Y c
i = y′c

i

´

3: Set γ′
i := maxy′∈YN :y′

<i
=y<i

Pr
`

Yi = 1
˛

˛θ, Y c
i = y′c

i

´

4: Draw ri from U(0, 1)

5: if ri < α′
i then

6: Set yi = 1

7: else if ri ≥ γ′
i then

8: Set yi = 0

9: else
10: Draw τ from U(α′

i, β
′
i)

11: if ri < τ then
12: Set yi := 1

13: else
14: Set yi := 0

15: end if
16: end if
17: end for
18: return y

[Return]
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