## Bayesian Meta-Analysis of Network Data via Reference Quantiles

**Carter T. Butts** 

Department of Sociology and

Institute for Mathematical Behavioral Sciences

University of California, Irvine buttsc@uci.edu

UCI MURI AHM, 6/3/11

This work was supported in part by NSF award CMS-0624257 and ONR award N00014-08-1-1015.

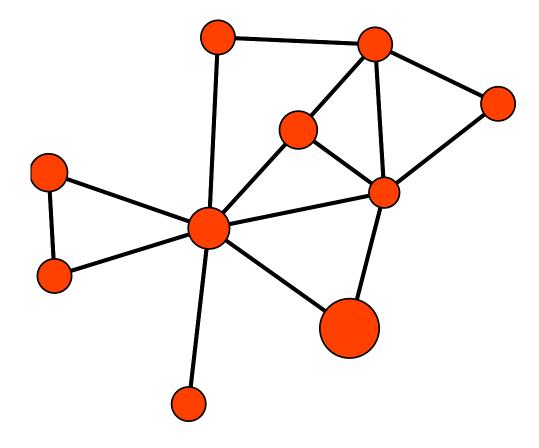
## Studying Structural Populations

- Fundamental concern of social network theory: the distribution of structural properties within and across networks
  - Indicators of underlying processes (e.g., structural balance (Harary, 1959), structural dependence (Pattison and Robins, 2002))
  - Determinants of social outcomes (e.g., diffusion (Morris and Kretzschmar, 1995), resource access (Burt, 1992))
- Most existing empirical literature built on case studies, but our interest is often on a broader population/superpopulation of structures
- Increasingly, we have access to samples of networks (e.g., Add Health, UCDS, GSS/ISSP, online network studies like Gjoka et al. (2010))
- Data thus exists to make progress on population questions, but we need methods that can support this objective
  - Foday, one approach that builds on classic reference quantile methods to allow inference for graph populations

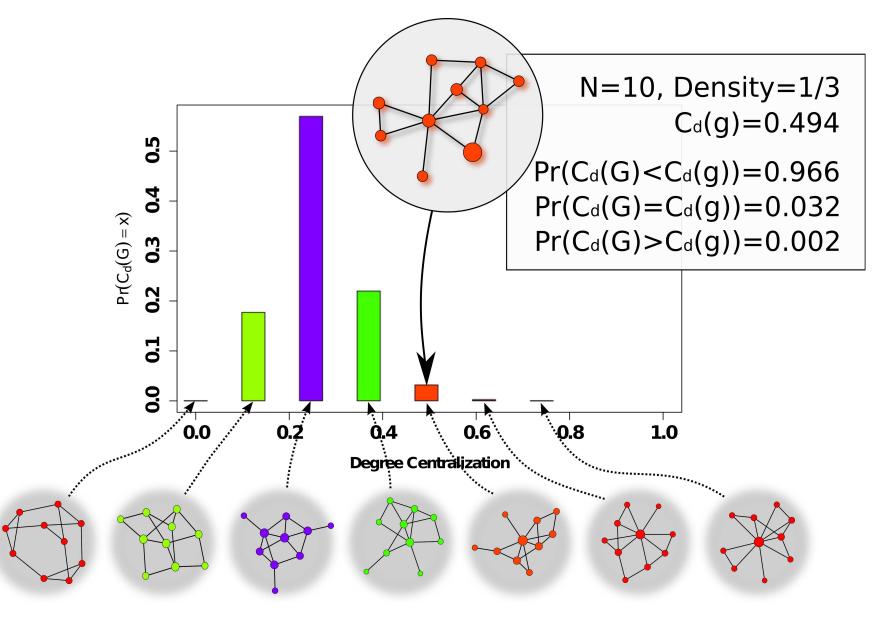


- ► Introduction
- Background: Detecting Structural Bias w/Reference Quantiles
- Extension to Multiple Networks
- ► Examples
- Conclusion

### Question: Is This a Centralized Network?



## Assessing Structure w/Reference Quantiles



Carter T. Butts, MURI AHM 6/3/11 - p. 5/3

## Side Comment: ERGs vs RQs

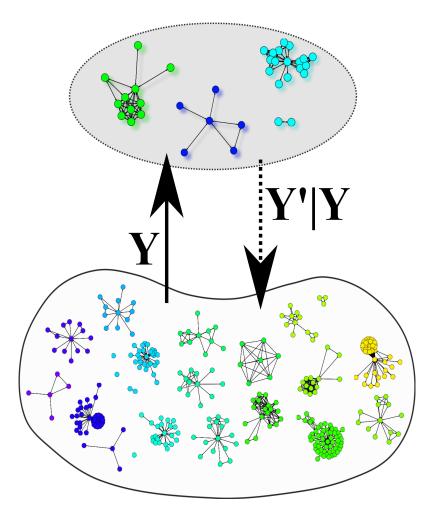
- Why not specify a parametric model for the network, and measure structural biases that way?
- ► We can (and do) using exponential family models (ERGs), but this is very hard:
  - Good specifications often hard to find unlike the CUG case, bad models can lead to inaccurate results for purely computational reasons (other problems notwithstanding)
  - Often requires worrying about large numbers of nuisance parameters, when we want only a single relationship
  - ▷ Difficult to scale large systems computationally hard, small ones have convex hull problems
  - Natural parameters usually lack scale-independent interpretation; makes size-heterogeneous comparison difficult
  - Most viable models require detailed structural information; with rare exceptions, effectively need the whole network
- Bottom line: there is still something to be said for RQs when you have a straightforward question
  - And note that you can use ERGs as reference models this was one of the reasons they were invented! (See Holland and Leinhardt, 1981)



- Introduction
- Background: Detecting Structural Bias w/Reference Quantiles
- Extension to Multiple Networks
- ► Examples
- Conclusion

# From Single Networks to Populations

- Imagine that we have a sample of networks drawn from some population of interest
- We'd like to assess the prevalance of some structural bias within the population (recognizing that there may be heterogeneity)
- Natural approach: model the reference quantiles, employ predictive distributions
  - Allows arbitrary questions of the form "if I drew another network from this population/process, what would its quantiles be?"
  - Can compare populations via their distributions
  - Questions still posed in terms of the quantiles, which we understand





- Assume we have a set of N quantile estimates, Y, from graphs drawn at random from population of interest
  - ▷ Can include sampling mechanisms, but am not going there today.
  - Will treat estimated quantiles as exact can extend, but this has few benefits and many costs
- As we know little about the generating process, we would like to treat distribution of quantiles as maximally dispersed, given the observed central tendency, data size, and support constraints
  - Maximum entropy interpretation of above implies an exponential family; in this case the Dirichlet distribution is a natural choice:

$$p(\mathbf{Y}|\theta) = \prod_{i=1}^{N} \frac{\Gamma(\sum_{j=1}^{3} \theta_j)}{\prod_{j=1}^{3} \Gamma(\theta_j)} \prod_{j=1}^{3} Y_{ij}^{\theta_j - 1}$$

 Sufficient stats are the log products of quantile values, and N (compare to Fisher's method)

## Prior Structure for the Population Model

- As before, want to maximize entropy. That again suggests exponential families (Jaynes, 1983); since our likelihood is also an exponential family, this can be satisfied by the conjugate prior:
  - $\triangleright \ \mbox{Let} \ \theta, \phi \in (\mathbb{R}^+)^3, \gamma \in \mathbb{R}^+.$  Then

$$p(\theta|\phi,\gamma) \propto \exp\left[(\theta-1)^T \phi + \gamma \left(\ln\Gamma\left(\sum_{j=1}^3 \theta_j\right) - \sum_{j=1}^3 \ln\Gamma(\theta_j)\right)\right]$$

- ▷ Prior parameters are interpretable as pseudo-data: equivalent of log quantile product ( $\phi$ ) and prior data size ( $\gamma$ ). Can be helpful to think of  $\exp(\phi/\gamma)$  as prior pseudo-geometric mean.
- ▷ No analytical normalization have to resort to computation. Sufficient condition for propriety is  $\max \phi_i < -\gamma \ln 3$ .
- $\triangleright$  Uninformative prior obtained as limit  $\gamma, \phi_i \rightarrow 0$  with  $\phi_1 = \phi_2 = \phi_3$
- ▷ Reasonable weakly informative prior:  $\gamma = 1, \phi_i \approx -\ln 4.5$ ; corresponds to 1 observation w/geometric mean matching uniform Dirichlet



- Since this is a conjugate prior, posterior is straightforward:
  - $\triangleright \text{ Given } \theta, \psi \in (\mathbb{R}^+)^3, \gamma \in \mathbb{R}^+$

$$p(\theta | \mathbf{Y}, \phi, \gamma) \propto \exp\left[ (\theta - 1)^T \left( \phi + \sum_{i=1}^N \ln \mathbf{Y}_i \right) + (\gamma + N) \left( \ln \Gamma \left( \sum_{j=1}^3 \theta_j \right) - \sum_{j=1}^3 \ln \Gamma \left( \theta_j \right) \right) \right]$$

- Normalizing factor again must be computed numerically
- ► Need to be able to simulate; two approaches so far
  - MCMC: easy to implement, but slow and approximate
  - Rejection sampling: harder to perform, but faster and exact

## Posterior Predictive Analysis

- We rarely want the distribution of  $\theta$ , but rather the associated distribution of quantiles (the posterior predictive)
  - $\triangleright$  Draw  $\theta^{(i)}$  from  $\theta | \mathbf{Y}, \psi, \gamma$ , then draw  $\mathbf{y}^{\prime(i)} \sim \text{Dirichlet}(\theta^{(i)})$
  - Interpretable as what one would be predicted to observe, if one drew another case from the same population (in the same way)
- Useful for asking many sorts of questions
  - $\triangleright$  "What's the probability that G will have p < 0.05 on this statistic?"
  - What's the probability that an arbitrary member of population A will be more extreme than a member of population B on a given statistic?"

## Complicating Matters: Additional Heterogeneity

- Our structure is as diffuse as possible, but only given the central tendency/data size
- ► What if the population contains a mix of types with multiple internal modes?
- ► One option: assume a finite mixture model
  - Can do, but choosing the number of mixture components is slow and difficult; want to keep analysis as automated as possible
- ► Alternative: infinite mixtures using nonparametric priors
  - ▷ Start w/K-class mixture of homogeneous models:

$$\begin{split} \lambda &\sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K) \\ \eta_i &\sim \text{Multinom}(\lambda) \\ \Theta_{\eta_i^{\perp}} &\sim \theta | \phi, \gamma \\ \mathbf{Y}_{\mathbf{i}^{\perp}} &\sim \text{Dirichlet}(\Theta_{\eta_i^{\perp}}) \end{split}$$

- ▷ Taking the limit of this mixture as  $K \to \infty$  leads to a *Dirichlet process* prior with base measure equivalent to the homogeneous prior and concentration parameter  $\alpha$
- Intuition: total population composed of a large group of subpopulations (potentially unlimited, but finite in practice), having unknown sizes/composition
  - $\diamond$  Prior expected Herfindahl index of the size distribution is  $1/(1 + \alpha)$  (follows from Anderson (1990))

## Posterior Simulation

► Here use the Gibbs sampling algorithm of Neal (2000, Alg. 2)

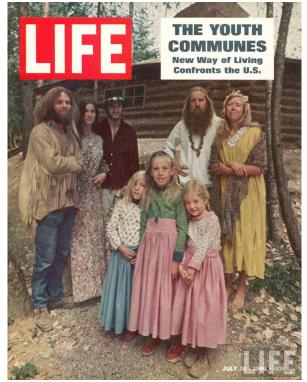
- Requires ability to draw from posterior and to calculate Bayes factors
- ▷ Use rejection sampling for former, numerical quadrature for latter
- Idea: alternate between "grouping" data points by cluster co-membership and drawing parameters per cluster (based on allocated data points); this eventually converges to target distribution
  - ▷ Conditional probability of assigning  $\mathbf{Y}_{i}$ . to existing cluster j w/prob  $\propto \frac{\kappa_{j}^{-i}}{N-1+\alpha}$ Dirichlet( $\mathbf{Y}_{i}$ . $|\Theta_{j}$ .), w/ $\kappa_{j}^{-i}$  the number of current members; assign to new cluster w/prob  $\propto \frac{\alpha}{N-1+\alpha} \iint_{(\mathbb{R}^{+})^{3}}$ Dirichlet( $\mathbf{Y}_{i}$ . $|\theta)p(\theta|\phi,\gamma)d\theta$
  - $\triangleright$  Per-cluster parameters  $\Theta_{j}.$  drawn from homogeneous model posterior, given assigned members
  - ▷ At each round, select existing cluster *j*'s parameter for  $\theta^{(i)}$  w/prob  $\kappa_j/(N + \alpha)$ , or draw from prior with prob  $\propto \alpha/(N + \alpha)$
- Given posterior draws  $\theta^{(i)}$ , can take posterior predictives as usual



- Introduction
- Background: Detecting Structural Bias w/Reference Quantiles
- Extension to Multiple Networks
- ► Examples
- Conclusion

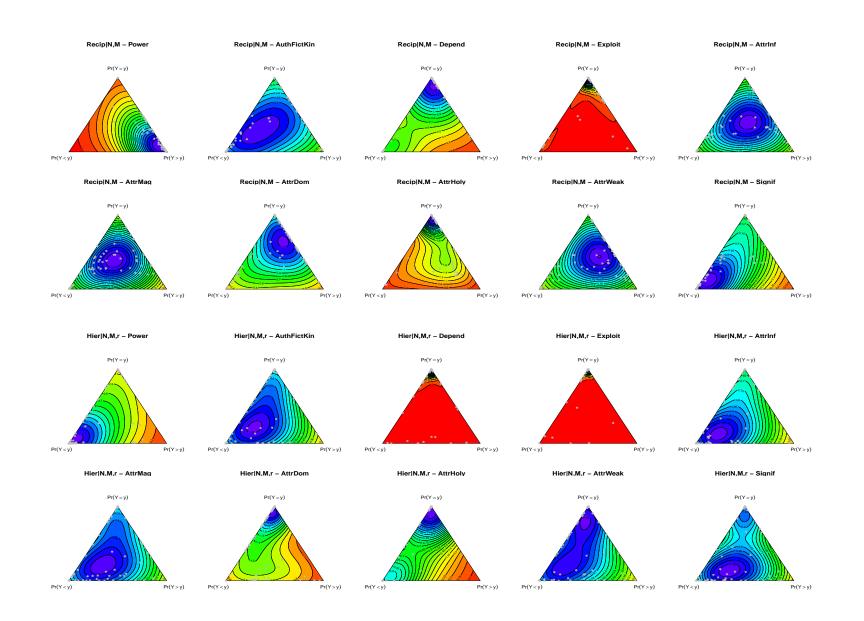
## Example: Hierarchy and Reciprocity in Urban Communes

- Motivation: structure of "power-active" relations in informal organizations (Reich and Butts, 2006)
  - To what extent are potential power "conduits" biased in ways that would allow/inhibit local vs. extended exercise of power?
- Data: Urban Communes Data Set (Zablocki, 1980)
  - 61 urban communes, ranging from 4 to 26 members
  - ▷ 10 relations
    - ◇ Power: ego claimed to exercise power over alter
    - AuthFictKin: ego occupies superordinate fictive kin role vs. alter
    - $\diamond~$  Depend: alter depends on ego more than vice versa
    - $\diamond~$  Exploits: ego exploits alter
    - $\diamond~$  AttrInf: ego regarded by alter as influential
    - AttrMag: ego regarded by alter as "sexy"/"charismatic"
    - ♦ AttrDom: ego regarded by alter as dominant
    - $\diamond~$  AttrHoly: ego regarded by alter as "holy"
    - AttrWeak: alter regarded by ego as"passive"/"dependent"
    - ◊ Signif: alter regards ego as "significant person" in own life



- Analysis using heterogeneous population model
  - Quantiles: edgewise reciprocity given size, density; Krackhardt hierarchy given size, dyad census (1e5 MC draws)
  - ▷ Weak "neutral" priors  $(\phi_i = -\ln(4.5), \gamma = 1, \alpha = 1)$  employed; pulls towards the null hypothesis
  - Posterior predictive simulation using MCMC (5 chains, 150 burn-in draws/chain, 2000 draws)

## Posterior Predictives, UCDS



Carter T. Butts, MURI AHM 6/3/11 - p. 17/3

## Posterior Predictives for Extreme Quantiles, UCDS

| Relation    | Reciprocity   Density                              |                                                     | Hierarchy   Dyad Census                            |                                                     |
|-------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|             | $\ln\left(\frac{\Pr(\text{sig.low})}{0.05}\right)$ | $\ln\left(\frac{\Pr(\text{sig.high})}{0.05}\right)$ | $\ln\left(\frac{\Pr(\text{sig.low})}{0.05}\right)$ | $\ln\left(\frac{\Pr(\text{sig.high})}{0.05}\right)$ |
| Power       | 1.82                                               | -3.91                                               | -3.91                                              | 1.89                                                |
| AuthFictKin | -1.27                                              | 0.87                                                | -1.83                                              | 0.69                                                |
| Depend      | -3.22                                              | 0.96                                                | -2.81                                              | -2.30                                               |
| Exploit     | -2.81                                              | -1.43                                               | -3.91                                              | -1.27                                               |
| Attrinf     | -1.71                                              | -0.69                                               | -2.12                                              | 0.91                                                |
| AttrMag     | -2.30                                              | -0.20                                               | -1.83                                              | 0.54                                                |
| AttrDom     | -2.30                                              | -1.61                                               | -2.53                                              | -1.27                                               |
| AttrHoly    | -3.22                                              | -2.53                                               | -3.91                                              | 1.34                                                |
| AttrWeak    | -2.12                                              | -0.87                                               | -1.71                                              | 0.85                                                |
| Signif      | -3.91                                              | 1.41                                                | -2.12                                              | 0.25                                                |

(Blue indicates odds ratios  $\geq 2$ ; red indicates odds ratios  $\leq 1/2$ )

## Example: Centralization and Cyclicity in WTC Radio Networks

- Motivation: structure of emergent communication networks in emergencies (Butts et al., 2007)
  - How do organizations balance the trade-off between efficiency gains from centralization and the need for multilateral negotiation to resolve complex dependencies?
  - Does the approach taken vary by organization type?
- Data: WTC emergency-phase radio networks (Butts et al., 2007)
  - 17 networks of radio communications among responders at WTC, PA-NYNJ, Newark Airport sites
  - 9 networks from "specialist" organizations, 8 from "non-specialists"
  - Sizes range from 24 to 256 persons (median 118)



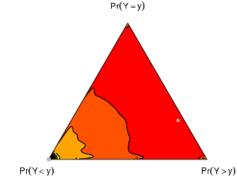
- Analysis via homogeneous population models for specialist, non-specialist organizations
  - Quantiles: degree/betweenness centralization, cyclicity given size, dyad census (2000 MC draws)
  - ▷ Weak "neutral" priors  $(\phi_i = -\ln(4.5), \gamma = 1, \alpha = 1)$
  - Posterior predictive simulation using rejection sampler (5000 draws per model)

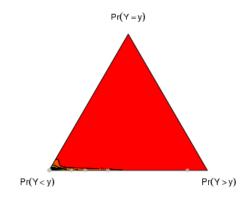
## Posterior Predictives, WTC

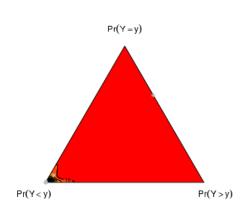


References Centralization - spec

Cyclicity - spec



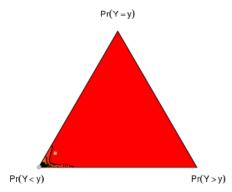


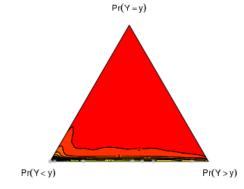


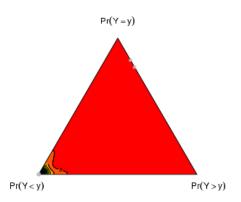
Degree Centralization - nonspec

References Centralization - nonspec

Cydidiy - nompec







## Posterior Predictives for Extreme Quantiles, WTC

| GLI            | Responder Type | $ln  \tfrac{\Pr(\text{Sig. Low})}{0.05}$ | $\ln rac{\Pr(\text{Sig. High})}{0.05}$ | $ln  \frac{\Pr(\text{Sig. High})}{\Pr(\text{Sig. Low})}$ |
|----------------|----------------|------------------------------------------|-----------------------------------------|----------------------------------------------------------|
| Degree         | Specialist     | -1.83                                    | 2.04                                    | 3.91                                                     |
| Centralization | Non-Specialist | -3.91                                    | 2.24                                    | 6.75                                                     |
| Betweenness    | Specialist     | -2.12                                    | 1.84                                    | 3.89                                                     |
| Centralization | Non-Specialist | -0.97                                    | 1.27                                    | 2.24                                                     |
| Cyclicity      | Specialist     | -0.65                                    | 1.77                                    | 2.42                                                     |
|                | Non-Specialist | 0.28                                     | 1.53                                    | 1.26                                                     |

(Blue indicates odds ratios  $\geq 2$ ; red indicates odds ratios  $\leq 1/2$ )



- Introduction
- Background: Detecting Structural Bias w/Reference Quantiles
- Extension to Multiple Networks
- ► Examples
- Conclusion



- Studying the properties of graph populations is important, and we need practical solutions
- Reference quantile method a good starting point: simple, scalable, few data requirements, easily understood
- Can build Bayesian superstructure on reference quantile scheme to study populations in a principled way
  - ▷ Rely on maximum entropy distributions as a weakly informative default
  - Can accomodate additional heterogeneity using nonparametric priors
  - Simulation practical using MCMC/rejection; note that difficulty does *not* increase with graph size!
- ► Of course, challenges remain....
  - ▷ Faster computation for rejection sampler
  - $\triangleright$  Assessing robustness to prior selection (particularly  $\alpha$ )
  - Predictive accuracy evaluation
  - Methods for integrating data quality measures



#### Thanks for your attention!

(For more details, see the forthcoming paper in *Sociological Methodology,* vol 41 (2011).)



A few properties we'd like our methods to have:

- ▷ Principled should be backed up by some reasonable theory of inference
- Scalable should be practical for very small and fairly large networks
- Relatively unsupervised should minimize the degree of analyst intervention/expertise needed to make things work

► Also important: suitability for "meta-analytic" use (loosely defined)

- Basis for reasoning from sample of networks to some more general case (population or super-population)
- Should have minimal per-case data requirements (e.g., extractable from published reports or other limited disclosure)
- Should be reasonably robust to poorly understood heterogeneity
- Should allow for use of weak prior information (aka "non-informative" analysis), and/or conservative estimation for extreme outcomes

# A Starting Point: Baseline Models

- Baseline models (Mayhew, 1984): a way of accounting for opportunity and constraint
  - Intuition: fix specified properties, assume system state is uniform given those properties
    - ◊ Compare with maximum entropy, thermodynamic models (e.g., Jaynes (1983))
  - > Of particular interest are the *conditional uniform graphs*:
    - ♦ Let  $\mathbb{G}$  be the set of all graphs, and let  $f : \mathbb{G} \mapsto \mathbb{R}$  be a graph statistic. The uniform graph distribution conditional on  $f, \tau$  is defined by the pmf

$$\Pr(G = g|f, \tau) = \left| \left\{ g' \in \mathbb{G} : f\left(g'\right) = \tau \right\} \right|^{-1} \mathbb{I}\left(f\left(g\right) = \tau\right), \tag{1}$$

where  $\ensuremath{\mathbb{I}}$  is the standard indicator function.

Sometimes used directly as an approximation, more often as a point of reference

- Incorporate factors that should be taken into account before reaching for more complex explanations
- Easy to work with, understand

# Baseline Models and Reference Quantiles

- Method of baseline modeling: assess system by reference to its baseline behavior
  - Classic approach (see, e.g. Davis, 1970; Holland and Leinhardt, 1970; 1972; Mayhew, 1984; Snijders and Stokman, 1987; Anderson et al., 1999)
  - ▷ Key tool: *reference quantiles* 
    - ♦ Let *g* be an observed graph, *M* a reference model, and *f* a statistic of substantive interest. Then the reference quantiles for *f*(*g*) with respect to *M* are defined as  $\Pr(f(G) < f(g)), \Pr(f(G) = f(g)), \operatorname{and} \Pr(f(G) > f(g)), \operatorname{where} G \sim M$
    - $\diamond$  Intuition: extremity of reference quantiles for f(g) tell us how the properties of g relate to what one would expect to see from its baseline characteristics
      - $\cdot$  Can be viewed as a index of the level of f versus the baseline distribution
      - · Compare similar use in classical null hypothesis testing, model adequacy checks
- Primitive, but has some important virtues:
  - Well-understood approach; relatively easy for non-specialists to grasp
  - ▷ Scalable; baselines (e.g., CUGs) often easy to simulate for large systems
  - Minimal data requirements; given conditioning statistics (e.g., size, mean degree) and f(g), one can reconstruct reference quantiles. (Useful in meta-analytic settings!)



In general, this is taken for granted:

 $\triangleright$  Simulate *n* draws  $g^{(1)}, \ldots, g^{(n)}$  from the reference distribution and compute

$$\mathbf{x} = \left(\sum_{i=1}^{n} \mathbb{I}\left(f(g^{(i)}) < f(g)\right), \sum_{i=1}^{n} \mathbb{I}\left(f(g^{(i)}) = f(g)\right), \sum_{i=1}^{n} \mathbb{I}\left(f(g^{(i)}) >'(g)\right)\right)$$

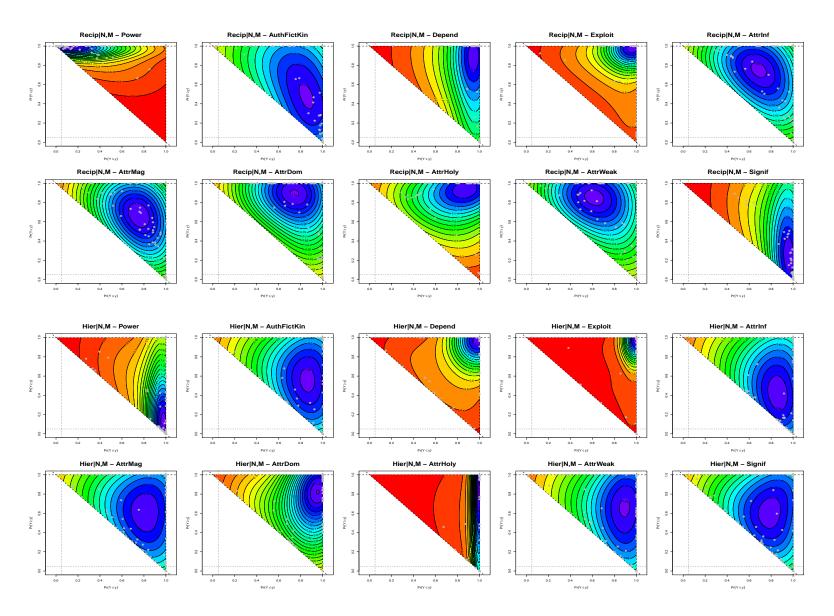
 $\triangleright$  Then use  $\mathbf{x}/n$  as estimator of true quantile vector,  $\psi$  (this is the trivial MLE)

 In fact, not so simple: easy to lose precision at extremes (especially w/large graphs and small simulation runs)

#### Simple Bayesian alternative

- $\triangleright$  Likelihood of  $\mathbf{x}|\psi$  multinomial, so choose uninformative prior for  $\psi$  and employ  $\hat{\psi} = \mathbf{E}\psi|\mathbf{x}|$ 
  - ♦ Several choices; here suggest Jeffreys prior, which is Dirichlet(1/2, 1/2, 1/2); posterior given x is  $Dirichlet(x_1 + 1/2, x_2 + 1/2, x_3 + 1/2)$
- ▷ Using posterior mean gives us  $\hat{\psi} = (\mathbf{x} + 1/2)/(3/2 + n)$ 
  - Non-extreme quantiles don't change much; "shrinks" extremes, but effect falls with n. Total effect is on par w/1.5 data points.
- BTW, you can use this on any similar problem take it home w/you!

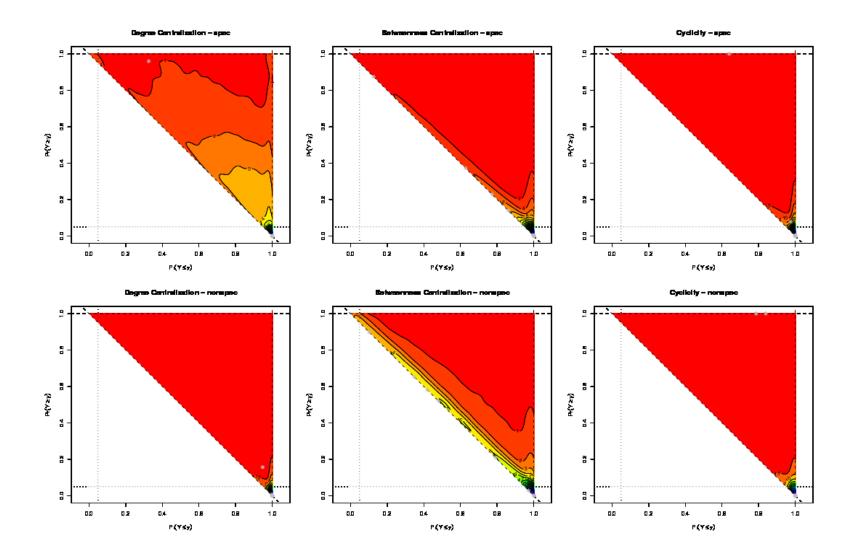
## Posterior Predictive p-values, UCDS



## Raw Posterior Predictives for Extreme Quantiles, UCDS

| Relation    | Reciprocity   Density |                        | Hierarchy   Dyad Census |                        |
|-------------|-----------------------|------------------------|-------------------------|------------------------|
|             | $\Pr(\text{sig.low})$ | $\Pr(\text{sig.high})$ | $\Pr(\text{sig.low})$   | $\Pr(\text{sig.high})$ |
| Power       | 0.310                 | 0.001                  | 0.001                   | 0.331                  |
| AuthFictKin | 0.014                 | 0.119                  | 0.008                   | 0.100                  |
| Depend      | 0.002                 | 0.130                  | 0.003                   | 0.005                  |
| Exploit     | 0.003                 | 0.012                  | 0.001                   | 0.014                  |
| Attrinf     | 0.009                 | 0.025                  | 0.006                   | 0.124                  |
| AttrMag     | 0.005                 | 0.041                  | 0.008                   | 0.086                  |
| AttrDom     | 0.005                 | 0.010                  | 0.004                   | 0.014                  |
| AttrHoly    | 0.002                 | 0.004                  | 0.001                   | 0.198                  |
| AttrWeak    | 0.006                 | 0.021                  | 0.009                   | 0.117                  |
| Signif      | 0.001                 | 0.204                  | 0.006                   | 0.064                  |

### Posterior Predictive *p*-values, WTC



# Raw Posterior Predictives for Extreme Quantiles, WTC

| GLI            | Responder Type | $\Pr(\text{Sig. Low})$ | $\Pr(\text{Sig. High})$ | $\frac{\Pr(\text{Sig. High})}{\Pr(\text{Sig. Low})}$ |
|----------------|----------------|------------------------|-------------------------|------------------------------------------------------|
| Degree         | Specialist     | 0.008                  | 0.385                   | 50.039                                               |
| Centralization | Non-Specialist | 0.001                  | 0.470                   | 857.555                                              |
| Betweenness    | Specialist     | 0.006                  | 0.316                   | 48.688                                               |
| Centralization | Non-Specialist | 0.019                  | 0.178                   | 9.368                                                |
| Cyclicity      | Specialist     | 0.026                  | 0.295                   | 11.191                                               |
|                | Non-Specialist | 0.066                  | 0.232                   | 3.531                                                |

### 1 References

- Anderson, B. S., Butts, C. T., and Carley, K. M. (1999). The interaction of size and density with graph-level indices. *Social Networks*, 21(3):239–267.
- Anderson, J. R. (1990). *The Adaptive Character of Thought*. Erlbaum, Hillsdale, NJ.
- Burt, R. S. (1992). *Structural Holes: The Social Structure of Competition*. Harvard University Press, Cambridge, MA.
- Butts, C. T., Petrescu-Prahova, M., and Cross, B. R. (2007). Responder communication networks in the World Trade Center Disaster: Implications for modeling of communication within emergency settings. *Journal of Mathematical Sociology*, 31(2):121–147.
- Davis, J. A. (1970). Clustering and hierarchy in interpersonal relations: Testing two theoretical models on 742 sociograms. *American Sociological Review*, 35:843–852.
- Gjoka, M., Kurant, M., Butts, C. T., and Markopoulou, A. (2010). Walking in Facebook: A case study of unbiased sampling of OSNs. *Proceedings of the 29th IEEE Conference on Computer Communications (IEEE INFOCOM)*.

- Harary, F. (1959). On the measurement of structural balance. *Behavioral Science*, 4:316–323.
- Holland, P. W. and Leinhardt, S. (1970). A method for detecting structure in sociometric data. *American Journal of Sociology*, 70:492–513.
- Holland, P. W. and Leinhardt, S. (1972). Some evidence on the transitivity of positive interpersonal sentiment. *American Journal of Sociology*, 72:492–513.
- Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs (with discussion). *Journal of the American Statistical Association*, 76(373):33–50.
- Jaynes, E. T. (1983). *Papers on Probability, Statistics, and Statistical Physics*. Dordrecht, Reidel. Rosencrantz, R. D. (Ed.).
- Mayhew, B. H. (1984). Baseline models of sociological phenomena. *Journal of Mathematical Sociology*, 9:259–281.
- Morris, M. and Kretzschmar, M. (1995). Concurrent partnerships and transmission dynamics in networks. *Social Networks*, 17(3):299–318.

- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. *Journal of Computational and Graphical Statistics*, 9(2):249–265.
- Pattison, P. E. and Robins, G. L. (2002). Neighborhoodbased models for social networks. *Sociological Methodology*, 32:301–337.
- Reich, L. and Butts, C. T. (2006). Structural properties of powerrelevant relations. Presentation to the 26th Sunbelt Network Conference (INSNA).
- Snijders, T. A. B. and Stokman, F. N. (1987). Extensions of triad counts to networks with different subsets of points and testing underlying random graph distributions. *Social Networks*, 9:249–275.
- Zablocki, B. (1980). *Alienation and Charisma: A Study of Contemporary American Communes*. The Free Press, New York.