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Studying Structural
Populations

◮ Fundamental concern of social network theory: the distribution of structural
properties within and across networks

⊲ Indicators of underlying processes (e.g., structural balance (Harary, 1959),
structural dependence (Pattison and Robins, 2002))

⊲ Determinants of social outcomes (e.g., diffusion (Morris and Kretzschmar,

1995), resource access (Burt, 1992))

◮ Most existing empirical literature built on case studies, but our interest is
often on a broader population/superpopulation of structures

◮ Increasingly, we have access to samples of networks (e.g., Add Health,
UCDS, GSS/ISSP, online network studies like Gjoka et al. (2010))

◮ Data thus exists to make progress on population questions, but we need
methods that can support this objective

⊲ Today, one approach that builds on classic reference quantile methods to allow

inference for graph populations
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Roadmap
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◮ Background: Detecting Structural Bias w/Reference
Quantiles

◮ Extension to Multiple Networks
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Question: Is This a
Centralized Network?
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Assessing Structure
w/Reference Quantiles
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Side Comment: ERGs vs RQs
◮ Why not specify a parametric model for the network, and measure structural biases

that way?

◮ We can (and do) using exponential family models (ERGs), but this is very hard:
⊲ Good specifications often hard to find - unlike the CUG case, bad models can lead to

inaccurate results for purely computational reasons (other problems notwithstanding)
⊲ Often requires worrying about large numbers of nuisance parameters, when we want only a

single relationship
⊲ Difficult to scale – large systems computationally hard, small ones have convex hull problems
⊲ Natural parameters usually lack scale-independent interpretation; makes

size-heterogeneous comparison difficult

⊲ Most viable models require detailed structural information; with rare exceptions, effectively

need the whole network

◮ Bottom line: there is still something to be said for RQs when you have a
straightforward question

⊲ And note that you can use ERGs as reference models – this was one of the reasons they

were invented! (See Holland and Leinhardt, 1981)
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From Single Networks to
Populations

◮ Imagine that we have a sample of
networks drawn from some
population of interest

◮ We’d like to assess the prevalance
of some structural bias within the
population (recognizing that there
may be heterogeneity)

◮ Natural approach: model the
reference quantiles, employ
predictive distributions
⊲ Allows arbitrary questions of the form “if

I drew another network from this
population/process, what would its
quantiles be?”

⊲ Can compare populations via their
distributions

⊲ Questions still posed in terms of the
quantiles, which we understand
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Modeling the Population

◮ Assume we have a set of N quantile estimates, Y, from graphs drawn at
random from population of interest

⊲ Can include sampling mechanisms, but am not going there today.

⊲ Will treat estimated quantiles as exact – can extend, but this has few benefits and many

costs

◮ As we know little about the generating process, we would like to treat
distribution of quantiles as maximally dispersed, given the observed central
tendency, data size, and support constraints

⊲ Maximum entropy interpretation of above implies an exponential family; in this case the
Dirichlet distribution is a natural choice:

p(Y|θ) =

N
Y

i=1

Γ(
P3

j=1 θj)
Q3

j=1 Γ(θj)

3
Y

j=1

Y
θj−1

ij

⊲ Sufficient stats are the log products of quantile values, and N (compare to Fisher’s

method)
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Prior Structure for the
Population Model

◮ As before, want to maximize entropy. That again suggests exponential families
(Jaynes, 1983); since our likelihood is also an exponential family, this can be satisfied
by the conjugate prior:

⊲ Let θ, φ ∈ (R+)3, γ ∈ R+. Then

p(θ|φ, γ) ∝ exp

2

4(θ − 1)T φ+ γ
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⊲ Prior parameters are interpretable as pseudo-data: equivalent of log quantile product (φ) and
prior data size (γ). Can be helpful to think of exp(φ/γ) as prior pseudo-geometric mean.

⊲ No analytical normalization – have to resort to computation. Sufficient condition for propriety
is maxφi < −γ ln 3.

⊲ Uninformative prior obtained as limit γ, φi → 0 with φ1 = φ2 = φ3

⊲ Reasonable weakly informative prior: γ = 1, φi ≈ − ln 4.5; corresponds to 1 observation

w/geometric mean matching uniform Dirichlet
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Posterior Analysis

◮ Since this is a conjugate prior, posterior is straightforward:

⊲ Given θ, ψ ∈ (R+)3, γ ∈ R
+

p(θ|Y, φ, γ) ∝ exp
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⊲ Normalizing factor again must be computed numerically

◮ Need to be able to simulate; two approaches so far

⊲ MCMC: easy to implement, but slow and approximate

⊲ Rejection sampling: harder to perform, but faster and exact
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Posterior Predictive Analysis

◮ We rarely want the distribution of θ, but rather the associated

distribution of quantiles (the posterior predictive)
⊲ Draw θ(i) from θ|Y, ψ, γ, then draw y′(i) ∼ Dirichlet(θ(i))

⊲ Interpretable as what one would be predicted to observe, if one drew another

case from the same population (in the same way)

◮ Useful for asking many sorts of questions
⊲ “What’s the probability that G will have p < 0.05 on this statistic?”

⊲ “What’s the probability that an arbitrary member of population A will be more

extreme than a member of population B on a given statistic?”
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Complicating Matters:
Additional Heterogeneity

◮ Our structure is as diffuse as possible, but only given the central
tendency/data size

◮ What if the population contains a mix of types with multiple internal modes?

◮ One option: assume a finite mixture model
⊲ Can do, but choosing the number of mixture components is slow and difficult; want to keep

analysis as automated as possible

◮ Alternative: infinite mixtures using nonparametric priors
⊲ Start w/K-class mixture of homogeneous models:

λ ∼ Dirichlet(α/K, . . . , α/K)

ηi ∼ Multinom(λ)

Θηi·
∼ θ|φ, γ

Yi· ∼ Dirichlet(Θηi·
)

⊲ Taking the limit of this mixture as K → ∞ leads to a Dirichlet process prior with base
measure equivalent to the homogeneous prior and concentration parameter α

⊲ Intuition: total population composed of a large group of subpopulations (potentially
unlimited, but finite in practice), having unknown sizes/composition
⋄ Prior expected Herfindahl index of the size distribution is 1/(1 + α) (follows from Anderson (1990))
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Posterior Simulation
◮ Here use the Gibbs sampling algorithm of Neal (2000, Alg. 2)

⊲ Requires ability to draw from posterior and to calculate Bayes factors

⊲ Use rejection sampling for former, numerical quadrature for latter

◮ Idea: alternate between “grouping” data points by cluster co-membership and
drawing parameters per cluster (based on allocated data points); this eventually
converges to target distribution

⊲ Conditional probability of assigning Yi· to existing cluster j w/prob

∝
κ
−i
j

N−1+α
Dirichlet(Yi·|Θj·), w/κ−i

j the number of current members; assign to new
cluster w/prob ∝ α

N−1+α

RRR

(R+)3
Dirichlet(Yi·|θ)p(θ|φ, γ)dθ

⊲ Per-cluster parameters Θj· drawn from homogeneous model posterior, given assigned
members

⊲ At each round, select existing cluster j’s parameter for θ(i) w/prob κj/(N + α), or draw
from prior with prob ∝ α/(N + α)

◮ Given posterior draws θ(i), can take posterior predictives as usual
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Example: Hierarchy and Reciprocity in
Urban Communes

◮ Motivation: structure of “power-active”
relations in informal organizations
(Reich and Butts, 2006)

⊲ To what extent are potential power “conduits”
biased in ways that would allow/inhibit local vs.
extended exercise of power?

◮ Data: Urban Communes Data Set (Zablocki,
1980)

⊲ 61 urban communes, ranging from 4 to 26
members

⊲ 10 relations
⋄ Power: ego claimed to exercise power over alter
⋄ AuthFictKin: ego occupies superordinate fictive kin

role vs. alter
⋄ Depend: alter depends on ego more than vice versa
⋄ Exploits: ego exploits alter
⋄ AttrInf: ego regarded by alter as influential
⋄ AttrMag: ego regarded by alter as

“sexy”/“charismatic”
⋄ AttrDom: ego regarded by alter as dominant
⋄ AttrHoly: ego regarded by alter as “holy”
⋄ AttrWeak: alter regarded by ego

as“passive”/“dependent”
⋄ Signif: alter regards ego as “significant person” in

own life

◮ Analysis using heterogeneous population
model

⊲ Quantiles: edgewise reciprocity given size,
density; Krackhardt hierarchy given size, dyad
census (1e5 MC draws)

⊲ Weak “neutral” priors
(φi = − ln(4.5), γ = 1, α = 1) employed;
pulls towards the null hypothesis

⊲ Posterior predictive simulation using MCMC (5
chains, 150 burn-in draws/chain, 2000 draws)
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Posterior Predictives, UCDS
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Posterior Predictives for
Extreme Quantiles, UCDS

Relation Reciprocity | Density Hierarchy | Dyad Census

ln
“

Pr(sig.low)
0.05

”

ln
“

Pr(sig.high)
0.05

”

ln
“

Pr(sig.low)
0.05

”

ln
“

Pr(sig.high)
0.05

”

Power 1.82 -3.91 -3.91 1.89

AuthFictKin -1.27 0.87 -1.83 0.69

Depend -3.22 0.96 -2.81 -2.30

Exploit -2.81 -1.43 -3.91 -1.27

AttrInf -1.71 -0.69 -2.12 0.91

AttrMag -2.30 -0.20 -1.83 0.54

AttrDom -2.30 -1.61 -2.53 -1.27

AttrHoly -3.22 -2.53 -3.91 1.34

AttrWeak -2.12 -0.87 -1.71 0.85

Signif -3.91 1.41 -2.12 0.25

(Blue indicates odds ratios ≥ 2; red indicates odds ratios ≤ 1/2)
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Example: Centralization and Cyclicity in
WTC Radio Networks

◮ Motivation: structure of emergent
communication networks in
emergencies (Butts et al., 2007)

⊲ How do organizations balance the
trade-off between efficiency gains from
centralization and the need for
multilateral negotiation to resolve
complex dependencies?

⊲ Does the approach taken vary by
organization type?

◮ Data: WTC emergency-phase radio
networks (Butts et al., 2007)

⊲ 17 networks of radio communications
among responders at WTC, PA-NYNJ,
Newark Airport sites

⊲ 9 networks from “specialist”
organizations, 8 from “non-specialists”

⊲ Sizes range from 24 to 256 persons
(median 118)

◮ Analysis via homogeneous population
models for specialist, non-specialist
organizations

⊲ Quantiles: degree/betweenness
centralization, cyclicity given size, dyad
census (2000 MC draws)

⊲ Weak “neutral” priors
(φi = − ln(4.5), γ = 1, α = 1)

⊲ Posterior predictive simulation using
rejection sampler (5000 draws per
model)
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Posterior Predictives, WTC
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Posterior Predictives for
Extreme Quantiles, WTC

GLI Responder Type ln Pr(Sig. Low)
0.05

ln Pr(Sig. High)
0.05

ln Pr(Sig. High)
Pr(Sig. Low)

Degree Specialist -1.83 2.04 3.91

Centralization Non-Specialist -3.91 2.24 6.75

Betweenness Specialist -2.12 1.84 3.89

Centralization Non-Specialist -0.97 1.27 2.24

Cyclicity Specialist -0.65 1.77 2.42

Non-Specialist 0.28 1.53 1.26

(Blue indicates odds ratios ≥ 2; red indicates odds ratios ≤ 1/2)
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Conclusion
◮ Studying the properties of graph populations is important, and we need

practical solutions

◮ Reference quantile method a good starting point: simple, scalable, few data
requirements, easily understood

◮ Can build Bayesian superstructure on reference quantile scheme to study
populations in a principled way
⊲ Rely on maximum entropy distributions as a weakly informative default
⊲ Can accomodate additional heterogeneity using nonparametric priors

⊲ Simulation practical using MCMC/rejection; note that difficulty does not increase

with graph size!

◮ Of course, challenges remain....
⊲ Faster computation for rejection sampler
⊲ Assessing robustness to prior selection (particularly α)
⊲ Predictive accuracy evaluation

⊲ Methods for integrating data quality measures
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The End

Thanks for your attention!

(For more details, see the forthcoming paper in
Sociological Methodology, vol 41 (2011).)
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Some Desiderata

◮ A few properties we’d like our methods to have:

⊲ Principled – should be backed up by some reasonable theory of inference

⊲ Scalable – should be practical for very small and fairly large networks

⊲ Relatively unsupervised – should minimize the degree of analyst
intervention/expertise needed to make things work

◮ Also important: suitability for “meta-analytic” use (loosely defined)

⊲ Basis for reasoning from sample of networks to some more general case
(population or super-population)

⊲ Should have minimal per-case data requirements (e.g., extractable from
published reports or other limited disclosure)

⊲ Should be reasonably robust to poorly understood heterogeneity

⊲ Should allow for use of weak prior information (aka “non-informative” analysis),
and/or conservative estimation for extreme outcomes
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A Starting Point: Baseline
Models

◮ Baseline models (Mayhew, 1984): a way of accounting for
opportunity and constraint

⊲ Intuition: fix specified properties, assume system state is uniform given those
properties

⋄ Compare with maximum entropy, thermodynamic models (e.g., Jaynes (1983))
⊲ Of particular interest are the conditional uniform graphs:

⋄ Let G be the set of all graphs, and let f : G 7→ R be a graph statistic. The uniform graph
distribution conditional on f, τ is defined by the pmf

Pr(G = g|f, τ) =
˛

˛

˘

g′ ∈ G : f
`

g′
´

= τ
¯˛

˛

−1
I (f (g) = τ) , (1)

where I is the standard indicator function.

◮ Sometimes used directly as an approximation, more often as a point
of reference
⊲ Incorporate factors that should be taken into account before reaching for more

complex explanations
⊲ Easy to work with, understand
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Baseline Models and
Reference Quantiles

◮ Method of baseline modeling: assess system by reference to its baseline
behavior

⊲ Classic approach (see, e.g. Davis, 1970; Holland and Leinhardt, 1970; 1972;
Mayhew, 1984; Snijders and Stokman, 1987; Anderson et al., 1999)

⊲ Key tool: reference quantiles

⋄ Let g be an observed graph, M a reference model, and f a statistic of substantive
interest. Then the reference quantiles for f(g) with respect to M are defined as
Pr (f(G) < f (g)), Pr (f(G) = f (g)), and Pr (f(G) > f (g)), where G ∼M

⋄ Intuition: extremity of reference quantiles for f(g) tell us how the properties of g relate to
what one would expect to see from its baseline characteristics

· Can be viewed as a index of the level of f versus the baseline distribution
· Compare similar use in classical null hypothesis testing, model adequacy checks

◮ Primitive, but has some important virtues:

⊲ Well-understood approach; relatively easy for non-specialists to grasp

⊲ Scalable; baselines (e.g., CUGs) often easy to simulate for large systems

⊲ Minimal data requirements; given conditioning statistics (e.g., size, mean
degree) and f(g), one can reconstruct reference quantiles. (Useful in
meta-analytic settings!)
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First Things: Estimating the Quantiles

◮ In general, this is taken for granted:

⊲ Simulate n draws g(1), . . . , g(n) from the reference distribution and compute

x =

 

n
X

i=1

I

“

f(g(i)) < f(g)
”

,

n
X

i=1

I

“

f(g(i)) = f(g)
”

,

n
X

i=1

I

“

f(g(i)) >′ (g)
”

!

⊲ Then use x/n as estimator of true quantile vector, ψ (this is the trivial MLE)

◮ In fact, not so simple: easy to lose precision at extremes (especially w/large
graphs and small simulation runs)

◮ Simple Bayesian alternative

⊲ Likelihood of x|ψ multinomial, so choose uninformative prior for ψ and employ ψ̂ = Eψ|x

⋄ Several choices; here suggest Jeffreys prior, which is Dirichlet(1/2, 1/2, 1/2); posterior given x is

Dirichlet(x1 + 1/2, x2 + 1/2, x3 + 1/2)

⊲ Using posterior mean gives us ψ̂ = (x + 1/2)/(3/2 + n)

⋄ Non-extreme quantiles don’t change much; “shrinks” extremes, but effect falls with n. Total effect is

on par w/1.5 data points.

◮ BTW, you can use this on any similar problem – take it home w/you!
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Posterior Predictive p-values,
UCDS
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Raw Posterior Predictives for
Extreme Quantiles, UCDS

Relation Reciprocity | Density Hierarchy | Dyad Census

Pr(sig.low) Pr(sig.high) Pr(sig.low) Pr(sig.high)

Power 0.310 0.001 0.001 0.331

AuthFictKin 0.014 0.119 0.008 0.100

Depend 0.002 0.130 0.003 0.005

Exploit 0.003 0.012 0.001 0.014

AttrInf 0.009 0.025 0.006 0.124

AttrMag 0.005 0.041 0.008 0.086

AttrDom 0.005 0.010 0.004 0.014

AttrHoly 0.002 0.004 0.001 0.198

AttrWeak 0.006 0.021 0.009 0.117

Signif 0.001 0.204 0.006 0.064
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Posterior Predictive p-values,
WTC
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Raw Posterior Predictives for
Extreme Quantiles, WTC

GLI Responder Type Pr(Sig. Low) Pr(Sig. High) Pr(Sig. High)
Pr(Sig. Low)

Degree Specialist 0.008 0.385 50.039

Centralization Non-Specialist 0.001 0.470 857.555

Betweenness Specialist 0.006 0.316 48.688

Centralization Non-Specialist 0.019 0.178 9.368

Cyclicity Specialist 0.026 0.295 11.191

Non-Specialist 0.066 0.232 3.531
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