
Latent Space Embeddings Optimization Exploration Tool

Empirical Analysis of Latent Space Embedding

David Mount and Eunhui Park

Department of Computer Science
University of Maryland, College Park

MURI Meeting – June 3, 2011



Latent Space Embeddings Optimization Exploration Tool

Motivation

The likelihood of a tie in social network is often
correlated with the similarity of attributes of the
actors. (E.g., geography, age, ethnicity, income).

Attributes may be observed or unobserved
(latent).

We seek to uncover these attributes through the
analysis of network’s structure.
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LSE — Stochastic Model

Input

Y : An n × n sociomatrix
(yi,j = 1 if there is a tie between i and j)

Model Parameters

Z : The positions of n individuals,
{z1, . . . , zn} in latent space

α: Real-valued scaling parameter Latent Space

Network
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LSE — Stochastic Model

Logistic Regression Model [HRH02]

Ties are statistically independent, and the odds of a tie decreases
exponentially with attribute distance.

Pr[Y | Z , α] =
∏

i 6=j

Pr[yi,j | zi , zj , α]

log odds(yi,j = 1 | zi , zj , α) = α− ‖zi − zj‖.

Defining ηi,j = α− ‖zi − zj‖, we have

log Pr[Y | η] =
∑

i 6=j

(ηi,jyi,j − log (1 + eηi,j )).
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Optimization

Physical Analogy

Minimize the energy function:

− log Pr[Y | α, η] = −
∑

i 6=j

(ηi,jyi,j−log (1 + eηi,j )),

where ηi,j = α− ‖zi − zj‖.

Attractive Component:∑
i 6=j ηi,jyi,j ⇒ Avoid long edges

Repulsive Component:
−
∑

i 6=j log (1 + eηi,j ) ⇒ Encourage dispersion

Objective: Find α and {zi}
n
i=1 to minimize energy.

Difficulty: High dimensional and nonlinear.

L

Attractive force

Repulsive force
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Approaches

Local Approaches

Newton-Raphson and gradient descent [NW99]

Force-directed graph embeddings [BGETT99, B01, FR91]

Graph layout software [GGK04, GK02, QE01]

Global Approaches

MCMC-based approaches, like Metropolis-Hastings [HRH02] and
simulated annealing
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Force-Directed Embedding

Force-Directed Embedding

for each u ∈ V do

vector f ← 0
for each v ∈ adj(u) do

compute attractive strength sa for edge (u, v)
f ← f + sa · ûv

for each v ∈ V \ {u} do

compute repulsive strength sr for pair {u, v}
f ← f + sr · v̂u

pos[u] = pos[u] + f

where ûv is the unit length vector from u to v

Good news: Easy to implement. Tends to converge rapidly

Bad news: Can get stuck in local energy minima
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MCMC Algorithm

Markov-Chain Monte-Carlo (MCMC)

For k = 0, 1, 2, . . .

Perturbation: Sample a random perturbation Z∗ of Zk .
Evaluation: Compute the decision variable

ρ =
Pr[Y | Z∗, α]

Pr[Y | Zk , α]

Decision: Accept Z∗ as Zk+1 with probability min(1, ρ)

Good news: Not just a single answer, but provides a sampling of the
space of embeddings
Bad news: Hard to know whether you have run long enough to be well
mixed
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Efficient LSE Computations

Questions

What is the nature of local minima?

How to compute and update forces and change scores efficiently?

Can we efficiently approximate change scores without adversely
affecting MCMC?

Computation involves retrieval of spatial relations and distances.

Need efficient geometric retrieval data structures:

Approximate: Exact structures are too slow.
Incremental: MCMC and force-directed algorithms involve repeated
perturbation of point positions.
Adaptable: Queries are highly non-uniform, and structures should
adapt to these patterns.
Variationally Sensitive: Approximations must preserve small
variations.
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Latent-Space Embedding Exploration Tool

Our initial attempts provided some successes,
some disappointments, and many surprises.

We needed a better understanding of many issues.

What is the nature of the objective function for
the logistic model?
What sorts of graphs and graph substructures
are easy/hard to embed?
How robust are embeddings to approximation
errors in computing scores?
When do force-based algorithms get stuck in
local minima and how to extricate them?
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Latent-Space Embedding Exploration Tool

We are developing an interactive graphical
software tool to help us understand, visualize, and
experiment with latent-space embeddings

Similar to the GRIP system of Gajer, Goodrich,
and Kobourov [GGK04, GK02]

Current features:

A number of synthetic graph generators (random
ala Erdös-Rényi, mesh, torus, logistic-model)
A number of force-directed layout algorithms
(Fruchterman-Reingold, Hooke’s spring law,
Eades, logistic-model + gradient descent)
User can interactively move and perturb subsets
of vertices
User can select from various options and
parameters
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Demo



Latent Space Embeddings Optimization Exploration Tool

Latent-Space Embedding Exploration Tool

Plans:

Add MCMC algorithm
Provide more graphical instrumentation to
determine the algorithm’s efficiency and
convergence speed
Experiment with the effects of variations to
algorithm/model/graph parameters
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Thank you!
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