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Structure

The problem: simulating large networks and learning the structure of
large networks is based on models. Some models of large networks are
viable, others are not—impeding MCMC simulation and learning.

The question: which models are non-viable?

The key to answers: notion of sufficient statistics (Fisher 1922): key to
MCMC simulation and learning.

Here:

Introduce notion of unstable sufficient statistics.

Discuss implications of unstable sufficient statistics: excessive
sensitivity and degeneracy.

Discuss impact of unstable sufficient statistics on MCMC simulation.

Discuss impact of unstable sufficient statistics on learning.

Michael Schweinberger Pennsylvania State University ONR grant N00014-08-1-1015michael.schweinberger@stat.psu.edu



References

Models

Frank and Strauss (1986), Wasserman and Pattison (1996): the
probability mass function of graph y can be parameterized in exponential
family form:

Pθ(Y = y) = exp(θTg(y)− ψ(θ))

⇒ the mass of graph y is an exponential function of

g(y): vector of sufficient statistics (Fisher 1922): e.g. number of
edges and triangles.

θ: vector of natural parameters.

µ(θ) = Eθ(g(Y )): vector of mean-value parameters.

Notes:

ψ(θ) = log
∑

x exp(θT g(x)).

Natural parameter space: {θ ∈ RK : ψ(θ) <∞}.

Here: focus on linear exponential families η(θ) = Aθ; both linear and non-linear
exponential families η(θ) in Schweinberger (2011).
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Non-viable models

Model may be non-viable, because

Pθ(Y = y) is near-degenerate (negative impact on MCMC
simulation and learning).

Pθ(Y = y) is excessively sensitive to small changes of y (negative
impact on MCMC simulation).

Pθ(Y = y) is excessively sensitive to small changes of θ (negative
impact on learning).

Which models are non-viable?

Models with number of 2-stars and triangles (Strauss 1986, Jonasson
1999, Häggström and Jonasson 1999, Snijders 2002, Handcock 2003,
Park and Newman 2004a,b, 2005, Rinaldo et al. 2009, Koskinen et al.
2010).

Which models, in general, are non-viable? Which sufficient
statistics tend to problematic?
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Simple examples

One-parameter exponential families (n = 32):
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Simple examples

One- and two-parameter exponential families (n = 32):
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Unstable sufficient statistics

Definition

Stable sufficient statistic (SSS): bounded by number of possible
edges N.

Unstable sufficient statistics (USS): not bounded by number of
possible edges N.

Examples

SSS: number of edges
∑n

i<j yij is O(N).

USS: number of 2-stars
∑n

i<j<k yijyik is O(N3/2) and number of

triangles
∑n

i<j<k yijyjkyik is O(N3/2).
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K -parameter exponential families with one USS

Excessive sensitivity

If n is large, Pθ(Y = y) tends to be extremely sensitive to small, local
changes of y : some, but not necessarily all, single-site log odds

log
Pθ(Y = x)

Pθ(Y = y)
tend to be extremely large. A walk through the set of y

resembles a walk through rugged, mountaineous landscape: small
increases in y can lead to dramatic increases and descreases in probability
mass. Example: models with number of 2-stars and triangles.

Degeneracy

If n is large, model tends to be degenerate wrt USS g1(y):

all θ1 < 0: probability mass tends to be concentrated on graphs
close to the (greatest) lower bound of USS; so is mean-value
parameter µ1(θ) = Eθ(g1(Y )).

all θ1 > 0: probability mass tends to be concentrated on graphs
close to the (lowest) upper bound of USS; so is mean-value
parameter µ1(θ) = Eθ(g1(Y )).
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K -parameter exponential families with multiple USS

Excessive sensitivity and degeneracy

One dominating USS: same excessive sensitivity and degeneracy
issues as above.

No dominating USS: unless clever parametrization is chosen,
counterbalancing unstable statistics may not work.
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Impact on MCMC simulation and learning

MCMC simulation:
By excessive sensitivity: small, local changes in y can result in
extremely large changes in probability mass.
By degeneracy: simulated networks tend to be degenerate wrt USS.

Learning:
If y is “extreme” in terms of g(y), maximum likelihood estimator of
θ does not exist (Handcock 2003).
Even if y is not “extreme” in terms of g(y), learning is problematic:
(a) the effective parameter space tends to be small.
(b) the estimating function of the method of maximum likelihood

estimation

∇θ logPθ(Y = y) = g(y)− Eθ(g(Y )) = g(y)− µ(θ)

tends to be extremely sensitive to changes in θ.
(c) MCMC simulation-based maximum likelihood estimation

algorithms—exploiting simulated network to estimate θ—do not
simulate networks which cluster around observed networks in terms
of sufficient statistics and therefore tend to suffer from
computational failure (Handcock 2003).
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Discussion

Question: can unstable sufficient be stabilized?

Tentative answer: simple stabilization strategies fail to address the
problem of lack of fit (Hunter et al. 2008) due to the
non-uniqueness of the canonical form of exponential families and the
paramerization-invariance of maximum likelihood estimators.

Question: instability implies non-viability, does stability imply
viability?

Tentative answer: stability may be too weak; maybe semi-group
structure (Lauritzen 1988); semi-group structure implies stability.

Technical details: see Schweinberger (2011).

Conclusion: the notion of instability is useful for characterizing,
detecting, and penalizing non-viable models which are useless for
simulating large networks and learning parameters from large networks.
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