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Understanding Random
Graph Models

◮ Substantial progress has been made on modeling networks (see, e.g.
Wasserman and Robins, 2005; Hunter and Handcock, 2006)

⊲ ERG form provides a lingua franca for model specification

⊲ Once in ERG form, can simulate, perform inference (if not too big)

◮ Problem: little theory on the behavior of general random graphs

⊲ We can write down a model, but what does it do?

⊲ Simulation is an option, but only for small N

⊲ Few if any analytical results

◮ Today: one approach to this issue

⊲ Use some simple ideas from stochastic process theory to bound general random graphs by
Bernoulli graphs

⊲ Can then use the (large) body of knowledge on Bernoulli graphs to study more general
models

⊲ Has both methodological and theoretical uses (as we shall see)
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Notational Note

◮ Assume G = (V, E) to be the graph formed by edge set E on vertex set V

⊲ Here, will take |V | = N to be fixed, and assume elements of V to be uniquely
identified

⊲ E may be random, in which case G = (V, E) is a random graph

⊲ Adjacency matrix Y ∈ {0, 1}N×N (may also be random); for G random, will use
notation y for adjacency matrix of realization g of G

⊲ Graph/adjacency matrix sets denoted by G,Y; set of all graphs/adjacency

matrices of order N denoted GN ,YN

◮ Additional matrix notation

⊲ y+
ij ,y−

ij denote matrix y with i, j cell set to 1 or 0 (respectively)

⊲ yc
ij denotes all cells of matrix y other than yij

⊲ Can be applied to random matrices, as well
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General Random Graphs in
ERG Form

◮ For order-N random graph G w/adjacency matrix Y on support YN , can
write pmf in ERG form by

Pr(Y = y|θ, t,YN , X) =
exp

(

θT t(y, X)
)

∑

y′∈YN
exp (θT t(y′, X))

IYN
(y) (1)

◮ θT
t: linear predictor

⊲ t : Y, X → R
m: vector of sufficient statistics

⊲ θ ∈ R
m: vector of parameters

⊲
P

y′∈YN
exp

`

θT
t(y′, X)

´

: normalizing factor (aka partition function, Z)

◮ Fully general framework, but analytically difficult

⊲ Z reduces to a tractable form in few cases (generally involving independent edges/dyads)

⊲ Even simulation is hard when differences of the form t(y) − t(y′) are expensive; requires

MCMC, often prohibitive for large N
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Taking Things Apart

◮ Instead of working with Y as a whole, can factor into “hierarchical” form

Pr(Y = y|θ, t,YN , X) = Pr(Y11 = y11|θ, t,YN , X) Pr(Y12 = y12|θ, t,YN , X, Y11 = y11) . . .

× Pr(YNN = yNN |θ, t,YN , X, Y11 = y11, . . . , YN(N−1) = yN(N−1))

(2)

=

N
Y

i=1

N
Y

j=1

Pr(Yij = yij |θ, t,YN , X, Y<ij = y<ij), (3)

⊲ (where y<ij denotes the sequence y11, y12, . . . , yi(j−1) (for j > 1) or

y11, y12, . . . , y(i−1)N (otherwise))

◮ Since we can’t compute the marginals of Y , this seems pretty useless; but
there is a workaround....
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Some Random Observations

◮ Let X = (X1, . . . , Xn) be a set of discrete random variables on joint support S

⊲ Can write joint pmf as
Pr(X = x) = Pr(X1 = x1) . . . Pr(Xn = xn|X1 = x1, . . . , Xn−1 = xn−1)

⊲ By definition, Pr(Xi = xi|X<i = x<i) =
P

x′∈S:x′

<i
=x<i

Pr(Xi = xi|X−i =

x′
−i) Pr(X−i = x′

−i|X<i = x<i)

⋄ Thus, the ith marginal is a convex combination of the full conditionals of Xi

◮ An implication: full conditionals can be used to bound marginals

⊲ minx′∈S Pr(Xi = xi|X−i = x′
−i) ≤ Pr(Xi = xi|X<i = x<i) ≤ maxx′∈S Pr(Xi =

xi|X−i = x′
−i)

⊲ Follows immediately from convexity condition

⊲ Where bounding full conditionals is easy, this can be very useful....
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Why Is This Helpful?
Conditionals in ERGs

◮ Well-known advantage of ERG form: full conditionals are easy to obtain

⊲ If B is the Bernoulli pmf, the full conditional pmf for Yij is given by

Pr(Yij = yij |θ, t,YN , X, Y c
ij = yc

ij) =

B

„

Yij = yij

˛

˛

˛

˛

h

1 + exp
h

θT
“

t
“

y−
ij , X

”

− t
“

y+
ij , X

””ii−1
«

(4)

⊲ Equivalently, Pr(Yij = 1|θ, t,YN , X, Y c
ij = yc

ij) is the inverse logit of

θT
“

t
“

y+
ij , X

”

− t
“

y−
ij , X

””

◮ Note: extrema of full conditionals (or bounds thereon) can often be found
analytically

⊲ Just need knowledge of t
“

y+
ij , X

”

− t
“

y−
ij , X

”

over YN

⊲ Provides a way out of the “numerical trap”
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From Bounding Distributions
to Bounding Processes

◮ Place bounds on the edgewise marginals, using the previous result

⊲ Define Λ, Ψ ∈ [0, 1]{N×N} such that
Λij ≤ miny′∈YN

Pr(Yij = 1|θ, t,YN , X, Y c
ij = y′c

ij) and
Ψij ≥ maxy′∈YN

Pr(Yij = 1|θ, t,YN , X, Y c
ij = y′c

ij)

⊲ For convenience, define Γij ≡ Pr(Yij = 1|θ, t,YN , X, Y<ij = y<ij)

⋄ Note that Γ is itself a random matrix, but that Γij depends only on Γ<ij

◮ From the above, we can construct a pair of bounding processes for Y

⊲ Let R = (R11, . . . , RNN ) be an iid uniform vector on [0,1]

⊲ Define matrices L, U ∈ {0, 1}N×N such that Lij = 1 iff Rij < Λij , and Uij = 1 iff
Rij < Ψij ; let Yij = 1 iff Rij < Γij

⊲ L and U are said to be Bernoulli bounding graphs for Y (in adjacency matrix form)
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Aside: The Subgraph Relation

◮ Given graphs G, H, G is a subgraph of

H (denoted G ⊆ H) if V (G) ⊆ V (H)

and E(G) ⊆ E(H)

⊲ If y and y′ are the adjacency matrices of G

and H, G ⊆ H implies yij ≤ y′
ij for all i, j

⊲ We use y ⊆ y′ to denote this condition

◮ f such that G ⊆ H implies f(G) ≤ f(H)

(or f(G) ≥ f(H)) is subgraph

monotone

⊲ Includes density, connectedness, degree

scores, maximum component size, mean

geodesic distance, etc.
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Bernoulli Bounding Graphs
for ERGs

◮ L and U bound Y in the following sense:

Theorem 1. Let l, u, and y be realizations of L, U , and Y as defined above, for common

realization vector r11, . . . , rNN of R. Then l ⊆ y ⊆ u.

⊲ The proof is fairly immediate from the construction of L, U , and Y , given coupling

through common realizations of R

◮ This has an important consequence:

Corollary 1. Let f be a graph statistic that is monotone in ⊆. Then

Pr(f(L) ≤ x) ≥ Pr(f(Y ) ≤ x) ≥ Pr(f(U) ≤ x) for all x if f is monotone increasing

in ⊆, with Pr(f(L) ≤ x) ≤ Pr(f(Y ) ≤ x) ≤ Pr(f(U) ≤ x) otherwise.

⊲ Thus, all raw moments of f for Y are bounded by the corresponding moments on
L and U

⊲ Taking f to be an indicator variable likewise allows L and U to bound the

probability of any monotone event (e.g., being fully connected) in Y
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Bernoulli Graph Bounds on
ERG Behavior

◮ From Corollary 1, we can bound the behavior of an arbitrary ERG by
examining the behavior of its associated Bernoulli graphs

⊲ We refer to bounds derived in this way as Bernoulli graph bounds

◮ Bernoulli graph bounds can be obtained for any subgraph-monotone
property

⊲ Includes many favorites, e.g. connectedness, density/mean degree, individual

degrees, maximum component size, closeness, etc.

◮ Bounds can be either analytical or numerical

⊲ Often, can use classical random graph theory to study properties of the bounding
graphs

⊲ Ease of exact simulation for Bernoulli graphs facilitates use even without

analytical results
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Summarizing the Approach

◮ General outline of the required procedure:

1. Write the pmf of Y in ERG form

2. Derive Λ and Ψ using the full conditionals

3. Examine the desired (monotone) property, f , on L and U

4. Use the behavior of f on L and U to describe the behavior of f on Y

◮ Bottom line: converts problems involving general random
graphs (hard) to problems involving Bernoulli graphs (less
hard)
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The Value of Setting
Boundaries

◮ Several important applications of Bernoulli graph bounds

⊲ Identifying potentially pathological ERGMs (and verifying that others are
“safe”)

⊲ Studying asymptotic behavior of graph processes

⊲ Identifying necessary/sufficient conditions for the emergence of
particular structural features

⊲ Robustness testing for network models (e.g., bounding the impact of
omitted effects)

⊲ Model approximation (e.g., substituting a Bernoulli model for a general

ERG)

◮ Bounds will often be very loose, but can still provide useful results –

we demonstrate by way of example
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Example: Specification Robustness of Spatial

Bernoulli Graph Models

◮ Need to be able to model networks on scales of cities, counties, etc.

⊲ Important to allow simulation of information diffusion, disease propagation, etc.

⊲ Also important to predict the effects of interventions (e.g., new technology) on

the above

◮ Problem: how do we simulate networks for very large (e.g.,

1 × 104 − 1 × 106) populations?

⊲ MCMC is too slow to be practical here

⊲ Core idea: rely on the potential predictive power of geography (Butts, 2003) to

pin down structure
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Spatial Bernoulli Graph
Models

◮ Spatial Bernoulli graphs provide a possible solution

⊲ Special case of the inhomogeneous Bernoulli family

⊲ Scale well, relatively easy to fit/simulate

◮ Basic idea: given distance matrix, D, Pr(Yij = 1|θ, D) = F(Dij , θ) (with all edges
independent given D)

⊲ F is a spatial interaction function (SIF), e.g. F(Dij , θ) = pb/(1 + αDij)
γ w/θ = (pb, α, γ)

⊲ Can express in ERG form via edgewise pmf:

Pr(Yij = 1|θ, t,YN , X, Y c
ij = y′c

ij) =

»

1 + exp

»

− log

„

(1 + αDij)
γ

pb

− 1

«––−1

(5)

◮ Example: extrapolative simulation of friendship ties in a US county

⊲ F as defined above, with θ = (0.529, 0.031423, 2.768) from analysis by Butts (2002) from
data of Festinger et al. (1950)

⊲ Test region is Choctaw, MS (pop 9,785) with population placed using block-level data from

the year 2000 US Census
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Population Distribution,
Choctaw, MS

Figure 1: Population distribution for Choctaw County, MS. Points are placed uniformly by census block
(N = 9, 758).
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Typical Model Realization,
Choctaw, MS

Figure 2: Typical realization of the social friendship model for Choctaw, MS.
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Testing Our Limits
◮ Dyadic independence makes life easy, here, but is it safe?

⊲ Real network could have dependence mechanisms (e.g., endogenous clustering)

⊲ Would like to assess extent to which model is robust to omission of these factors

◮ Example mechanism: local triangulation

⊲ Define the local triangle statistic to be
ttℓ

(y, D, τ) =
PN

i=1

PN
j=i+1

PN
k=j+1 I(Dij < τ)I(Djk < τ)I(Dik < τ)yijyjkyik

⋄ Intuitively, can use to express idea that shared partners increase tie probability, but only
when all parties are within radius τ of each other

⊲ Adding to ERG conditional gives us

Pr(Yij = 1|θ, t,YN , X, Y c
ij = y′c

ij) =

»

1 + exp

»

− log

„

(1 + αDij)
γ

pb

− 1

«

− θtttℓ
(y, D, τ)

––−1

(6)

◮ How much impact could local triangulation have on the model?

⊲ Here, focus on diffusion: how many people could be reached by a rumor introduced to a
randomly selected member of the population?

⊲ Question: how large must θt, τ be before its behavior changes substantially?
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Bounding the Expanded
Model

◮ We are interested in the increased diffusion resulting from excess clustering, and so
focus on the upper bound (U ) in the θt > 0 regime

⊲ Note that the maximum conditional edge probability occurs when Y c
ij is complete

⊲ From Equation 6, this gives us

Ψij = max
y′∈YN

Pr(Yij = 1|θ, t,YN , X, Y c
ij = y′c

ij) (7)

=

2

41 + exp

2

4log

»

(1 + αDij)
γ

pb

− 1

–

− θtI(Dij < τ)
X

k 6=i,j

I(Djk < τ)I(Dik < τ)

3

5

3

5

−1

(8)

⊲ U is then a Bernoulli graph with parameter matrix Ψ

◮ To examine the impact of θt, τ on diffusion, we employ simulation

⊲ Draw from U , compute diffusion potentials (weighted distribution of component sizes)

⊲ Examine range of θt, τ over which there is little change in diffusion potential in U ; this

provides an upper bound on the true impact of local triangulation
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Results: Mean Diffusion Size

Mean Number Reached

θ 0.0000 0.0020 0.0039 0.0078 0.0156 0.0312 0.0625 0.1250 0.2500 0.5000

τ = 0m 103.02 103.31 103.04 104.04 103.67 103.47 103.70 103.76 103.29 103.93

3m 103.29 103.89 103.06 103.48 102.96 103.66 104.31 104.45 104.62 107.07

9m 103.45 104.63 104.18 104.15 104.42 106.11 108.36 112.27 118.59 125.94

27m 104.47 103.62 103.98 104.48 105.75 107.35 112.34 118.70 127.97 138.63

81m 104.25 105.29 107.07 111.53 119.09 129.35 149.81 171.89 197.90 224.19

243m 103.27 122.46 139.58 165.49 197.61 241.84 292.11 339.01 364.75 380.68

729m 102.68 225.80 284.04 331.03 363.88 394.30 441.22 474.45 554.09 800.55

2187m 103.10 409.02 460.34 513.53 590.84 995.69 4779.88 7270.19 8947.38 9651.42

Table 1: Upper bounds for the mean number of persons reachable from a randomly chosen seed as
a function of θ and τ , based on 500 simulated networks.
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Results: Median Diffusion
Size

Median Number Reached

θ 0.0000 0.0020 0.0039 0.0078 0.0156 0.0312 0.0625 0.1250 0.2500 0.5000

τ = 0m 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

3m 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

9m 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00

27m 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00

81m 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00

243m 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00 4.00 5.00

729m 3.00 3.00 3.00 3.00 4.00 4.00 5.00 6.00 26.00 139.00

2187m 3.00 4.00 4.00 5.00 7.00 553.00 6825.00 8383.00 9345.00 9706.00

Table 2: Upper bounds for the median number of persons reachable from a randomly chosen seed as
a function of θ and τ , based on 500 simulated networks.
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Summary

◮ Often, we need to study general random graphs that are difficult to simulate
(or we simply want analytical expressions for model behavior)

◮ Bernoulli graph bounds provide one approach to this problem

⊲ Leads to a pair, L, U of graphs such that L ⊆ Y ⊆ U for a given set of random
inputs

⊲ For subgraph monotone properties, features of L and U bound the features of Y

⊲ Since L, U are Bernoulli graphs, can use classical random graph theory and/or

simulation to study

◮ Sample application: evaluating robustness of spatial Bernoulli models to
local clustering

⊲ In the studied case, can show that fairly strong/long range clustering is required
to change diffusion behavior

⊲ Results suggest that this model (in this setting, at least) is not sensitive to

assumption of no excess clustering, at least for diffusion
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Further Developments

◮ Approximate ERG sampling in fixed worst-case time

⊲ Given set of random “coins,” some elements of Y will be fixed by their bounds

⊲ Can iteratively update bounds on Yi marginals by previously fixed edge variables;
when no progress can be made, perturb by selecting first unfixed Yi and
randomly fixing (approximating the true marginal by a random guess)

⊲ Clearly O(N4) in worst case, but can approach O(N2) when dependence is

weak; haven’t yet implemented, so not clear how well it works

◮ “Pseudo-marginalized” likelihoods

⊲ The pseudo-likelihood approximates all marginals by their full conditionals,
effectively approximating marginal sum by a point mass

⊲ Why not try marginalizing by summing over draws from a (Bernoulli) baseline
model (conditioning as we go)?

⊲ Could lead to more robust estimator than the MPLE with similar computational

cost
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