Modeling Relational Events via Latent Classes

Christopher DuBois

Department of Statistics University of California, Irvine

May 25, 2010 This material is based on research supported by the Office of Naval Research under award N00014-08-1-1015.

Social networks and relational events

- Aim: study how massive networks of social entities interact
- Often such data is a sequence of *relational events*, a timestamped event with a sender, receiver, and action type
- Examples
 - Online social networks: sharing of media
 - One-to-one communication: email, phone, etc
 - International political events

Goal: Prediction

What is the probability the next event is sent by individual s to receipient r?

Goal: Prediction

- What is the probability the next event is sent by individual s to receipient r?
- Want models that are:
 - scalable
 - □ interpretable
 - easily extended
 - robust to missing data
 - work when few covariates are available
 - □ able to share statistical strength over similar individuals/events

Real World Data: Eckmann Email Data

200,000 messages among 2997 individuals over 82 days

Real World Data: Eckmann Email Data

200,000 messages among 2997 individuals over 82 days

Real World Data: Eckmann Email Data

200,000 messages among 2997 individuals over 82 days

Data

Data

Model

Other approaches: Block models

9 / 28

111

A different approach

Sender, receiver, action type cond. ind. given a latent class

Sender, receiver, action type cond. ind. given a latent class

- For each event
 - □ Draw c ~ Multinomial(π), the event's class
 - □ Draw $s|c \sim$ Multinomial(θ_c), the event's sender
 - □ Draw $r|c \sim$ Multinomial(ϕ_c), the event's receiver
 - □ Draw $a|c \sim Multinomial(\psi_c)$, the event's type

Sender, receiver, action type cond. ind. given a latent class

For each event

- □ Draw c ~ Multinomial(π), the event's class
- □ Draw $s|c \sim Multinomial(\theta_c)$, the event's sender
- □ Draw $r|c \sim$ Multinomial(ϕ_c), the event's receiver
- □ Draw $a|c \sim$ Multinomial(ψ_c), the event's type

Likelihood:

$$P(D|\Phi) = \prod_{i=1}^{T} \sum_{c=1}^{C} P(s_i|\theta, c) P(t_i|\phi, c) P(a_i|\psi, c) P(c|\pi)$$
$$= \prod_{i=1}^{T} \sum_{c=1}^{C} \theta_{c,s_i} \phi_{c,r_i} \psi_{c,a_i} \pi_c$$

Inference: Leverage advances for similar models

- Data Augmentation latent variable which represents a class assignment
- Conjugate Dirichlet priors make deriving the posterior easy
- E-step and M-step derivations are straightforward
- Integrate out θ, φ, ψ to derive collapsed Gibbs sampling equations for the latent assignments c (minimal bookkeeping required)

Exploratory Analysis with MPMM

Experiments - Evaluating predictive accuracy

- Split data in training set and test set
- Evaluate log probability of test events under model:

$$L_{\text{test}} = \frac{1}{T} \sum_{i=1}^{T} \log(f(Y_i | Y_{\text{train}})) = \frac{1}{T} \sum_{i=1}^{T} \log(\hat{p}_{s_i, r_i, a_i})$$

 Larger values indicate the model assigns higher probability to observed events

Experiments

Experiments

Data: International Political Events

- Automatically-coded Reuters news articles
- Subset with only US-foreign interactions:
 - 40031 events from 81 entities associated with the United States to 2695 foreign entities over 5 years
 - 178 action types (e.g. criticize, host a meeting, military occumpation)

Exploratory Analysis with MPMM

Class A

Top Senders	Pr.	Top Receivers	Pr.	Top Actions	Pr.
U.S. : Government agents	0.47	Greece : NA	0.05	Sports contest	0.59
U.S. : Athletes	0.29	Australia : Government agents	0.02	Agree or accept	0.14
U.S. : Nominal agents	0.04	United Kingdom : NA	0.02	Optimistic comment	0.04
U.S. : Police	0.04	Canada : Government agents	0.02	Comment	0.03
U.S. : Occupations	0.04	France : NA	0.01	Control crowds	0.03
U.S. : Ethnic agents	0.03	Belgium : Government agents	0.01	Improve relations	0.01

Class B

Top Senders	Pr.	Top Receivers	Pr.	Top Actions	Pr.
U.S. : Military	0.88	Iraq : Government agents	0.17	Comment	0.19
U.S. : Government agents	0.08	Iraq : National executive	0.07	Military raid	0.14
U.S. : Military hardware	0.01	Iraq : Military	0.05	Military clash	0.10
U.S. : Officials	0.00	Iraq : Ethnic agents	0.05	Military occupation	0.10
U.S. : Police	0.00	Iraq : Intangible things	0.04	Shooting	0.10
U.S. : Motor vehicles	0.00	NA : Insurgents	0.04	Political arrests and detentions	0.04

Exploratory Analysis with MPMM

International political events

Future Directions for the MPMM

- Time dependence: HMM at the class level is a simple extension
- Nonparametric: Dirichlet Process instead of a Dirichlet prior on the class distribution
- Non-symmetric priors
- Smoothing that is more specific to social networks (e.g. friend-of-a-friend effects)

Thank you!

Collapsed Gibbs Sampling Equations

$$P(c_{i} = c | z^{\neg i}, C, \Phi) \propto \left(M_{c}^{\neg i} + \alpha_{c}\right) \left(\frac{U_{c,s_{i}}^{\neg s_{i}} + \beta}{\sum_{s=1}^{n_{s}} U_{c,s}^{\neg i} + n_{s}\beta}\right)$$
$$\left(\frac{V_{c,r_{i}}^{\neg i} + \gamma}{\sum_{r=1}^{n_{r}} V_{c,r}^{\neg i} + n_{r}\gamma}\right) \left(\frac{W_{c,a}^{\neg i} + \delta}{\sum_{a=1}^{n_{a}} W_{c,a}^{\neg i} + n_{a}\delta}\right)$$

MAP Estimates

$$\hat{\pi}_{c} = \frac{M_{c}}{\sum_{c} M_{c}}$$

$$\hat{\theta}_{c,r} = \frac{N_{c,s} + \beta}{\sum_{s=1}^{n_{s}} N_{c,s} + n_{s}\beta}$$

$$\hat{\phi}_{c,r} = \frac{U_{c,r} + \gamma}{\sum_{r=1}^{n_{r}} U_{c,r} + n_{r}\gamma}$$

$$\hat{\psi}_{c,a} = \frac{W_{c,a} + \delta}{\sum_{a=1}^{n_{a}} W_{c,a} + n_{a}\delta}$$

Expectation-Maximization Equations *E-step:*

$$P(c_i = c | s_i r_i, a_i, \Phi) \propto \theta_{c,s_i} \phi_{c,r_i} \psi_{c,a_i}$$

M-step:

$$\hat{\theta}_{c,s} = \frac{\sum_{i=1}^{T} l(s_i = c) P(c_i = c)}{\sum_{i=1}^{T} P(c_i = c)}$$
$$\hat{\phi}_{c,r} = \frac{\sum_{i=1}^{T} l(r_i = c) P(c_i = c)}{\sum_{i=1}^{T} P(c_i = c)}$$
$$\hat{\psi}_{c,r} = \frac{\sum_{i=1}^{T} l(a_i = c) P(c_i = c)}{\sum_{i=1}^{T} P(c_i = c)}$$

Sender, receiver, action type cond. ind. given a latent class

- Baseline: $n_s \times n_r \times n_a$ parameters
- MPMM: $C(n_s + n_r + n_a)$ parameters

Discussion: Nonnegative Matrix Factorization

Discussion: Nonnegative Matrix Factorization

Inference

- Uninformative hyperparameters for both baseline and model so that $\Pr(p) \propto 1$ and $\Pr(\Phi) \propto 1$
- Choosing C: Can use predictive accuracy on validation set (or other model selection approaches, e.g. BIC or DIC)