Christopher DuBois

Department of Statistics
University of California, Irvine

May 25, 2010
This material is based on research supported by the Office of Naval
Research under award NO0014-08-1-1015.



Social networks and relational events

= Aim: study how massive networks of social entities interact

= Often such data is a sequence of relational events, a
timestamped event with a sender, receiver, and action type
= Examples
0 Online social networks: sharing of media

o One-to-one communication: email, phone, etc
O International political events




Goal: Prediction

= What is the probability the next event is sent by individual s to
receipient r?




Goal: Prediction

= What is the probability the next event is sent by individual s to
receipient r?

= Want models that are:

O

O 0O 0o0oad

scalable

interpretable

easily extended

robust to missing data

work when few covariates are available

able to share statistical strength over similar individuals/events




Real World Data: Eckmann Email Data
= 200,000 messages among 2997 individuals over 82 days
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Real World Data: Eckmann Email Data
= 200,000 messages among 2997 individuals over 82 days
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Other approaches: Block models
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A different approach
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Marginal Product Mixture Model

Sender, receiver, action type cond. ind. given a latent class




Marginal Product Mixture Model

Sender, receiver, action type cond. ind. given a latent class
= For each event

o0 Draw ¢ ~ Multinomial(r), the event’s class
Draw s|c ~ Multinomial(4.), the event’s sender
)

O (6c),
o Draw r|c ~ Multinomial(¢.), the event’s receiver
O

Draw a|c ~ Multinomial(¢.), the event’s type




Marginal Product Mixture Model

Sender, receiver, action type cond. ind. given a latent class
= For each event

o0 Draw ¢ ~ Multinomial(r), the event’s class

0 Draw s|c ~ Multinomial(6,), the event’s sender

o Draw r|c ~ Multinomial(¢.), the event’s receiver

0 Draw alc ~ Multinomial(«.), the event’s type
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Inference: Leverage advances for similar models

= Data Augmentation - latent variable which represents a class
assignment

= Conjugate Dirichlet priors make deriving the posterior easy

= E-step and M-step derivations are straightforward

= Integrate out 6, ¢, ¢ to derive collapsed Gibbs sampling
equations for the latent assignments ¢ (minimal bookkeeping
required)




Exploratory Analysis with MPMM
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Experiments - Evaluating predictive accuracy
= Split data in training set and test set
= Evaluate log probability of test events under model:

-

T
Ltest Z Y | Ytram = Z pS, I, al

m | arger values indicate the model assigns higher probability to
observed events
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Experiments
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Data: International Political Events

= Automatically-coded Reuters news articles
® Subset with only US-foreign interactions:

O 40031 events from 81 entities associated with the United States to
2695 foreign entities over 5 years

O 178 action types (e.g. criticize, host a meeting, military
occumpation)




Exploratory Analysis with MPMM

Class A

Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Government agents 0.47 Greece : NA 0.05 Sports contest 0.59
U.S. : Athletes 0.29 Australia : Government agents 0.02 Agree or accept 0.14
U.S. : Nominal agents 0.04 United Kingdom : NA 0.02 Optimistic comment 0.04
U.S. : Police 0.04 Canada : Government agents 0.02 Comment 0.03
U.S. : Occupations 0.04 France : NA 0.01 Control crowds 0.03
U.S. : Ethnic agents 0.03 Belgium : Government agents 0.01 Improve relations 0.01
Class B

Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Military 0.88 Iraq : Government agents 0.17 Comment 0.19
U.S. : Government agents 0.08 Iraq : National executive 0.07 Military raid 0.14
U.S. : Military hardware 0.01 Iraq : Military 0.05 Military clash 0.10
U.S. : Officials 0.00 Iraq : Ethnic agents 0.05 Military occupation 0.10
U.S. : Police 0.00 Iraq : Intangible things 0.04 Shooting 0.10
U.S. : Motor vehicles 0.00 NA : Insurgents 0.04 Political arrests and detentions 0.04
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Exploratory Analysis with MPMM

International political events
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Future Directions for the MPMM

= Time dependence: HMM at the class level is a simple extension

= Nonparametric: Dirichlet Process instead of a Dirichlet prior on
the class distribution

= Non-symmetric priors

= Smoothing that is more specific to social networks (e.g.
friend-of-a-friend effects)




Thank you!
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Collapsed Gibbs Sampling Equations
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MAP Estimates
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Expectation-Maximization Equations

E-step:
P(Ci = C‘S,‘r/, aj, CD) X Hc,s,¢c,r,»¢c,a,»
M-step:
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Marginal Product Mixture Model

Sender, receiver, action type cond. ind. given a latent class

m Baseline: ns x n, x ngy parameters
= MPMM: C(ns + nr + ng) parameters




Discussion:

Sender

Nonnegative Matrix Factorization
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Discussion: Nonnegative Matrix Factorization
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Inference

= Uninformative hyperparameters for both baseline and model so
that Pr(p) o< 1 and Pr(®) o 1

m Choosing C: Can use predictive accuracy on validation set (or
other model selection approaches, e.g. BIC or DIC)




