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Social networks and relational events
� Aim: study how massive networks of social entities interact
� Often such data is a sequence of relational events, a

timestamped event with a sender, receiver, and action type
� Examples

� Online social networks: sharing of media
� One-to-one communication: email, phone, etc
� International political events
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Goal: Prediction
� What is the probability the next event is sent by individual s to

receipient r?

� Want models that are:
� scalable
� interpretable
� easily extended
� robust to missing data
� work when few covariates are available
� able to share statistical strength over similar individuals/events
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Real World Data: Eckmann Email Data
� 200,000 messages among 2997 individuals over 82 days
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Model
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Other approaches: Block models

[?] [?] [?]
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A different approach
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Marginal Product Mixture Model
Sender, receiver, action type cond. ind. given a latent class

� For each event
� Draw c ∼ Multinomial(π), the event’s class
� Draw s|c ∼ Multinomial(θc), the event’s sender
� Draw r |c ∼ Multinomial(φc), the event’s receiver
� Draw a|c ∼ Multinomial(ψc), the event’s type

� Likelihood:

P(D|Φ) =
T∏

i=1

C∑
c=1

P(si |θ, c)P(ti |φ, c)P(ai |ψ, c)P(c|π)

=
T∏

i=1

C∑
c=1

θc,siφc,riψc,aiπc
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Inference: Leverage advances for similar models
� Data Augmentation - latent variable which represents a class

assignment
� Conjugate Dirichlet priors make deriving the posterior easy
� E-step and M-step derivations are straightforward
� Integrate out θ, φ, ψ to derive collapsed Gibbs sampling

equations for the latent assignments c (minimal bookkeeping
required)
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Exploratory Analysis with MPMM

Receiver

S
en

de
r

500

1000

1500

2000

500 1000 1500 2000 2500

count

1000

2000

3000

4000

5000

Latent Class

1

2

3

4

5

6

7

8

9

10

13 / 28



Experiments - Evaluating predictive accuracy
� Split data in training set and test set
� Evaluate log probability of test events under model:

Ltest =
1
T

T∑
i=1

log(f (Yi |Ytrain)) =
1
T

T∑
i=1

log(p̂si ,ri ,ai )

� Larger values indicate the model assigns higher probability to
observed events
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Experiments
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Experiments
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Data: International Political Events
� Automatically-coded Reuters news articles
� Subset with only US-foreign interactions:

� 40031 events from 81 entities associated with the United States to
2695 foreign entities over 5 years

� 178 action types (e.g. criticize, host a meeting, military
occumpation)
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Exploratory Analysis with MPMM

Class A
Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Government agents 0.47 Greece : NA 0.05 Sports contest 0.59
U.S. : Athletes 0.29 Australia : Government agents 0.02 Agree or accept 0.14
U.S. : Nominal agents 0.04 United Kingdom : NA 0.02 Optimistic comment 0.04
U.S. : Police 0.04 Canada : Government agents 0.02 Comment 0.03
U.S. : Occupations 0.04 France : NA 0.01 Control crowds 0.03
U.S. : Ethnic agents 0.03 Belgium : Government agents 0.01 Improve relations 0.01

Class B
Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Military 0.88 Iraq : Government agents 0.17 Comment 0.19
U.S. : Government agents 0.08 Iraq : National executive 0.07 Military raid 0.14
U.S. : Military hardware 0.01 Iraq : Military 0.05 Military clash 0.10
U.S. : Officials 0.00 Iraq : Ethnic agents 0.05 Military occupation 0.10
U.S. : Police 0.00 Iraq : Intangible things 0.04 Shooting 0.10
U.S. : Motor vehicles 0.00 NA : Insurgents 0.04 Political arrests and detentions 0.04
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Exploratory Analysis with MPMM
International political events
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Future Directions for the MPMM
� Time dependence: HMM at the class level is a simple extension
� Nonparametric: Dirichlet Process instead of a Dirichlet prior on

the class distribution
� Non-symmetric priors
� Smoothing that is more specific to social networks (e.g.

friend-of-a-friend effects)
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Thank you!
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Collapsed Gibbs Sampling Equations

P(ci = c|z¬i , C,Φ) ∝
(
M¬i

c + αc
)( U¬i

c,si
+βPns

s=1 U¬i
c,s+nsβ

)
(

V¬i
c,ri

+γPnr
r=1 V¬i

c,r +nrγ

)(
W¬i

c,ai
+δPna

a=1 W¬i
c,a+naδ

)
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MAP Estimates

π̂c =
Mc∑
c Mc

θ̂c,r =
Nc,s + β∑ns

s=1 Nc,s + nsβ

φ̂c,r =
Uc,r + γ∑nr

r=1 Uc,r + nrγ

ψ̂c,a =
Wc,a + δ∑na

a=1 Wc,a + naδ
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Expectation-Maximization Equations
E-step:

P(ci = c|si ri ,ai ,Φ) ∝ θc,siφc,riψc,ai

M-step:

θ̂c,s =

∑T
i=1 I(si = c)P(ci = c)∑T

i=1 P(ci = c)

φ̂c,r =

∑T
i=1 I(ri = c)P(ci = c)∑T

i=1 P(ci = c)

ψ̂c,r =

∑T
i=1 I(ai = c)P(ci = c)∑T

i=1 P(ci = c)
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Marginal Product Mixture Model
Sender, receiver, action type cond. ind. given a latent class

� Baseline: ns × nr × na parameters
� MPMM: C(ns + nr + na) parameters
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Discussion: Nonnegative Matrix Factorization
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Discussion: Nonnegative Matrix Factorization
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Inference
� Uninformative hyperparameters for both baseline and model so

that Pr(p) ∝ 1 and Pr(Φ) ∝ 1
� Choosing C: Can use predictive accuracy on validation set (or

other model selection approaches, e.g. BIC or DIC)
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