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Motivation: Why model networks?

A statistical model for
observed network data
yobs allows us to:

Summarize: Give a parsimonious quantitative summary of the
data and, ideally, how precisely we know this summary

Predict: Describe or simulate other networks that could have
arisen from the same process
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Motivation: The likelihood function and MLE

The ERG model class:

Pθ(Y = y) =
exp{θtg(y)}

κ(θ)
, where κ(θ) =

∑
all possible

graphs z

exp{θtg(z)}

θ is a parameter vector to be estimated.

g(y) is a user-defined vector of graph statistics.

The loglikelihood function is

`(θ) = θtg(yobs)− log κ(θ).

The MLE is the maximizer θ̂ of the likelihood.
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The likelihood is sometimes intractable
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For this undirected, 34-node
network, computing `(θ) directly
requires summation of

7,547,924,849,643,082,704,483,
109,161,976,537,781,833,842,
440,832,880,856,752,412,600,
491,248,324,784,297,704,172,
253,450,355,317,535,082,936,
750,061,527,689,799,541,169,
259,849,585,265,122,868,502,
865,392,087,298,790,653,952

terms.
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The pseudolikelihood: A tractable alternative

Some algebra based on the ERGM gives, for all i 6= j ,

log
P(Yij = 1 |Y c

ij )

P(Yij = 0 |Y c
ij )

= θt
[
g(Y +

ij )− g(Y−
ij )

]
.

The pseudolikelihood ignores the conditioning, assuming
instead

log
P(Yij = 1)

P(Yij = 0)
= θt

[
g(Y +

ij )− g(Y−
ij )

]
≡ θtδ(Y )ij

independently for all i 6= j .

Thus, the pseudolikelihood equals

∏
i 6=j

exp
{
θtδ(yobs)ij

}yobs
ij

1 + exp {θtδ(yobs)ij}
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Evidence of bias in MPLE compared to MLE

Van Duijn, Gile, and Handcock (2009, Social Networks) compare
MLE to MPLE.

They cite a small but compelling set of explorations of the
MPLE, suggesting that there may be large differences between
the MPLE and the approximate MLE, sometimes even in
cases where the dependence is not thought to be a concern.

They explore the bias in the MLE and MPLE compared to the
“truth”

They introduce a bias-corrected version of the MPLE (the
“MBLE”).

A similar bias-correction is possible for the MLE, though it is
a bit less straightforward.
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bias-correction via Firth

The bias-correction we employ (which might be better described as
a preemptive bias-mitigation, rather than correction) follows from
Firth (1993). The idea is to maximize a penalized likelihood which
induces a bias in the score function in order to reverse the some of
the anticipated bias in the maximizer. The penalized likelihood is:

`bc(θ) = `(θ) + 1/2 log |I (θ)|

The resulting maximizer is also the Bayesian maximum posterior
estimator based on assigning a Jeffreys prior to the parameter.
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The intuition behind this modification for an exponential family
model is the following: Since the score function, U(η), can be
written

U(η) = `′(η) = g(Y )− κ′(η),

it is clear that the shape of U(η) is not affected by the sufficient
statistic, g(Y ). For this reason, any anticipated bias in the MLE
can be offset by shifting the score function by the amount
bias ∗ ∇U. (Here ∇U = −i(η).) This adjustment is illustrated in
the following figure, taken from Firth (1993):

Figure: Modification of the unbiased score function
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Evidence of bias in MLE (and MPLE) compared to “truth”

Taken from van Duijn, et al. (2009), these boxplots show the bias
of the MLE for selected parameters in two networks (“original” and
“transitivity”) for the canonical parameter space. (The true
parameter is shown as a horizontal line.) Note that the bias is
greatest in the MLE.

58 M.A.J. van Duijn et al. / Social Networks 31 (2009) 52–62

Fig. 1. Boxplots of the distribution of the MLE, the MPLE and the MBLE of the geometrically weighted edgewise shared partner statistic (GWESP), differentialactivity by practice
statistic (Nodal), and homophily on practice statistic (Homophily) under the natural and mean value parameterization for 1000 samples of the original Lazega network and
1000 samples of the Lazega network with increased transitivity. (a) Natural parameterization, GWESP; (b) mean-value parameterization, GWESP; (c)natural parameterization,
node practice; (d) mean-value parameterization, node practice; (e) natural parameterization, homoph practice; (f) mean value parameterization, homoph practice.

ters. Fig. 1(b), (d) and (f) demonstrate that with negligible bias and
substantially smaller variance, the MLE clearly out-performs the
pseudo-likelihood methods in the mean-value parameter space.

There is a pronounced left skew to the mean-value parameter
estimates for the pseudo-likelihood methods. The bivariate scatter

plots in Fig. 2 suggest that it is this set of samples with very low
mean-value parameter estimates that account for much of the bias,
and therefore efficiency loss of the pseudo-likelihood methods. The
MBLE performs better than the MPLE because its estimates are less
skewed than those of the MPLE.
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Evidence of bias in MLE (and MPLE) compared to “truth”

Here we see that there is no bias of the MLE for selected
parameters in two networks (“original” and “transitivity”) for the
mean value parameter space. (This is by definition, since the
mean-value MLE is the observed statistic.)
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Comparison on Lazega collaboration network

In order to compare our present extended results to the results
found for just the MBLE and the ordinary MPLE and MLE in the
van Duijn, et al. paper, we duplicate their results on the corporate
lawyer partnerships data and include the analysis for the
bias-corrected MLE (pMLE).
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Lazega collaboration network

The Lazega collaboration data are collaborations in the late 1980’s
between 36 New England lawyers determined by their responses to
the question “With which members of your firm have you spent
time together on at least one case, have you been assigned to the
same case, have they read or used your work product or have you
have read or used their work product?”

Additional member attributes collected include the attorneys’
gender, age, status (36 are partners; 35 are associates),
seniority, years with the firm, practice (litigation or corporate),
office location (Boston, Hartford, or Providence), and law school
attended (Yale or Harvard, University of Connecticut, or any
other).
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Following van Duijn, et al., we simulate networks based on a
“truth” for the following model:

Model terms ”True” parameter value

edges -6.506

GWESP 0.897

seniority (nodal covariate) 0.853

practice (nodal covariate) 0.410

practice (homophily effect) 0.759

gender (homophily effect) 0.702

office (homophily effect) 1.145
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Preliminary results:

Results based on very few simulations show no improvement in the
MLE yet...
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Figure: Distribution of the GWESP and Nodal Practice canonical
parameter; true parameter shown as horizontal line.
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Preliminary results:

Here you can see that the number of sub-simulations for
calculating the mean value parameter is clearly not sufficient, as
the mean for the uncorrected MLE should be unbiased...
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Figure: Distribution of the GWESP and Nodal Practice mean value
parameter; true parameter shown as horizontal line.
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Current extensions:

increasing the simulations for the current network

applying the same to the “increased transitivity” version of
the collaboration network as used in van Duijn, et al.

applying the same to a larger biological network

applying the same to a friendship network
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A few words about Contrastive Divergence (CD)

Consider the idea of MCMC MLE:

Suppose we fix η0. A bit of algebra shows that

− log Eη0

[
exp

{
(η − η0)

tg(Y )
}]

= `(η)− `(η0). (1)

The Law of Large Numbers suggests obtaining a sample of Y
from the model using θ0 as the parameter, then approximating
the expectation by a sample mean.

Q: How do we sample from g(Y ) using θ0 as the parameter?
A: Run MCMC infinitely long.

But what if we only run MCMC for a single step (starting at
yobs), for a randomly chosen Yij?

For this Yij , we’re sampling from the conditional distribution
given (yobs)cij .
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A few words about Contrastive Divergence (CD)

To summarize:

Running an infinitely long Markov chain leads to the
loglikelihood.

Running a 1-step Markov chain leads to the pseudolikelihood.

Thus, if we alternately sample and then optimize the resulting
”likelihood-like” function, we can view MLE and MPLE as two
ends of a spectrum, the “contrastive divergence” spectrum.
(MLE is CD-∞ and MPLE is CD-1.)
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A few words about Contrastive Divergence (CD)

Considering CD-1. . .
Q: Is it better to

1 Repeatedly pick i 6= j at random, or

2 Cycle through all possible i 6= j in some systematic fashion?

A: The latter. The reason boils down to the following well-known
identity for any two random variables Y and Z :

Var(Y ) = Var [E (Y |Z )] + E [Var(Y |Z )] .

Here, “Y ” is the likelihood-like quantity based on the randomly
sampled networks and “Z” is the selected pair i 6= j .
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