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Motivation

Social networks are used to represent a variety of
relational data.

Social networks exhibit structural features:

Transitivity
Homophily on attributes
Clustering

The likelihood of a tie is often correlated with the
similarity of attributes of the actors. (E.g.,
geography, age, ethnicity, income).

These attributes may be observed or unobserved.

A subset of nodes with many ties between them
may indicate clustering with respect to an
underlying (latent) social space.
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Latent Space Embedding (LSE)

Hypothesis

The likelihood of relational ties in social
networks depends on the similarity of attributes
in an unobserved latent space.

Problem Statement

Given a network Y = [yi,j ] with n nodes,
estimate a set of positions Z = {z1, . . . , zn} in
R

d that best describes this network relative to
some model.
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LSE — Stochastic Model

Input

Y : An n × n sociomatrix
(yi,j = 1 if there is a tie between i and j)

Model Parameters

Z : The positions of n individuals,
{z1, . . . , zn} in latent space

α: Real-valued scaling parameter

Stochastic Model [HRH02]

Ties are statistically independent:

Pr[Y | Z , α] ,
∏

i 6=j

Pr[yi,j | zi , zj , α]
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LSE — Stochastic Model

Logistic Regression Model [HRH02]

log odds(yi,j = 1 | zi , zj , α) = α− ‖zi − zj‖.

Define ηi,j , α− ‖zi − zj‖. We have

log Pr[Y | η] =
∑

i 6=j

(ηi,jyi,j − log (1 + eηi,j )).

Stretch

Spread

To maximize Pr[Y | η]:

Minimize Stretch:
∑

i 6=j ηi,jyi,j ⇒ Shrinks long edges.

Maximize Spread: −
∑

i 6=j log (1 + eηi,j ) ⇒ Keeps points apart.
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LSE — Efficient cost computation

Computational Problem

Given an n × n matrix Y , determine Z and α to maximize Pr[Y | Z , α].

Method: Markov-Chain Monte Carlo (MCMC):

Perturb current point locations: Z → Z
∗.

Compute change in probability: ρ = Pr[Y |Z∗
,α]

Pr[Y |Z ,α]
.

Accept change with probability min(1, ρ).
Rinse and repeat.

Issues:

Computing Pr[Y | Z , α] takes quadratic time.
Use a spatial index to store spatial relationships.
The index must be dynamic.
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Computational Tools – Nets

Net

P is a finite set of points in a R
d . Given

r > 0, an r -net for P is a subset X ⊆ P

such that,

max
p∈M

dist(p,X ) < r and

min
x,x′∈X

x 6=x′

‖x − x ′‖ ≥ r .

r

P

X
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Net Trees

Net Tree

The leaves of the tree consists of the points of P .

The tree is based on a series of nets, P(1),P(2), . . . ,P(h), where P(i)

is a (2i )-net for P(i−1).

Each node on level i − 1 is associated with a parent, at level i , which
lies lies within distance 2i .
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Net Trees

Net Tree

The leaves of the tree consists of the points of P .

The tree is based on a series of nets, P(1),P(2), . . . ,P(h), where P(i)

is a (2i )-net for P(i−1).

Each node on level i − 1 is associated with a parent, at level i , which
lies lies within distance 2i .

a

b

c

d

e

a b c d e

a c e

a e

e



Latent Space Embeddings Computational Tools Computational Issues Conclusions

Well-Separated Pair Decompositions (WSPD)

Well-Separated Pair Decomposition

n points determine O(n2) pairs

A and B are s-well separated if they
can be enclosed in balls of radius r
that are separated by at least s · r

A WSPD of a point set P is a
collection of well-separated pairs
(Ai ,Bi ) covering all pairs of the set

An n-element point set in dimension d

has a WSPD of size O(sdn) = O(n)
[CaK95]

≥ s · r

r

r

A

B
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Computational Issues

Main Computational Issues

Spread: −
∑

i 6=j log (1 + eηi,j )

Stretch:
∑

i 6=j ηi,jyi,j

Clustered Motion: Moving blocks of points efficiently

Dynamics: Updating the data structures
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Computational Issues – Spread

Spread Term:

−
∑

i 6=j

log (1 + eα−‖zi−zj‖)

Independent of edges

Dominated by nearby objects
(Tends quickly to zero as ‖zi − zj‖ increases)

Proposed Approach: Locally sensitive sampling:

Compute a WSPD with a low separation factor
This provides a crude estimate of the distance distribution
Sample pairs at random, favoring pairs that are close
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Computational Issues – Stretch

Stretch Term:

∑

i 6=j

ηi,jyi,j =
∑

(i,j)∈E

(α− ‖zi − zj‖)

= α|E | −
∑

(i,j)∈E

‖zi − zj‖.

Computable in time proportional to the number of edges

Sparse Graphs: (|E | = O(n)) Compute by brute force

Dense Graphs: (|E | ≫ O(n))

Euclidean Distance: Approximate through a combination of
power-series expansion and WSPDs (as in FMM)
Squared Euclidean Distance: Efficient block motion
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Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances: α|E | −
∑

(i,j)∈E ‖zi − zj‖
2

Preprocessing

Build a WSPD Φ = {(A1,B1), (A2,B2), . . .}.

For each pair (A,B) ∈ Φ, let
EA,B = |E ∩ (A× B)|. Maintain:

Weight: wA,B = |EA,B |

Centroid Displacement Vector:
VA,B = 1

wA,B

∑
(a,b)∈EA,B

(b − a)

Base Stretch: ∆A,B = 1
wA,B

∑
(a,b)∈EA,B

‖b − a‖2

A

B

wA,B = 5

VA,B
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Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances: α|E | −
∑

(i,j)∈E ‖zi − zj‖
2

Block-Motion Update

If B is translated by t relative to A, then can update ∆A,B in O(1) time.

∆A,B+t =
1

wA,B

∑

(a,b)

‖(b + t)− a‖2 =
1

wA,B

∑

(a,b)

‖t + (b − a)‖2

=
1

wA,B

∑

(a,b)

(t · t) + 2(t · (b − a)) + (b − a) · (b − a)

=
1

wA,B



wA,B(t · t) + 2(t ·
∑

(a,b)

(b − a)) +
∑

(a,b)

‖b − a‖2





= (t · t) + 2(t · VA,B) + ∆A,B .
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Computational Issues – Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of
points in O(k) time.

Use the net tree to define blocks at various
resolutions.

WSPD and associated values, wA,B , VA,B , ∆A,B

are maintained in the net tree.

Updates to block membership can be performed
efficiently in O(log n) time.

Standard Euclidean Distances: Can approximate
using power series.
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Future Work

Continue to refine computational methods

Prototype algorithms and data structures

Empirical analysis of accuracy and efficiency
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Thank you!
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