Implementation Issues for Latent Space Embedding

Minkyoung Cho, David Mount, and Eunhui Park
Department of Computer Science
University of Maryland, College Park
MURI Meeting - May 25, 2010

Motivation

- Social networks are used to represent a variety of relational data.
- Social networks exhibit structural features:
- Transitivity
- Homophily on attributes
- Clustering
- The likelihood of a tie is often correlated with the similarity of attributes of the actors. (E.g., geography, age, ethnicity, income).
- These attributes may be observed or unobserved.
- A subset of nodes with many ties between them may indicate clustering with respect to an underlying (latent) social space.

Latent Space Embedding (LSE)

Hypothesis

The likelihood of relational ties in social networks depends on the similarity of attributes in an unobserved latent space.

Problem Statement

Given a network $Y=\left[y_{i, j}\right]$ with n nodes, estimate a set of positions $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ in \mathbb{R}^{d} that best describes this network relative to some model.

Network

LSE - Stochastic Model

Input

- $Y:$ An $n \times n$ sociomatrix $\left(y_{i, j}=1\right.$ if there is a tie between i and $\left.j\right)$

Model Parameters

- Z : The positions of n individuals, $\left\{z_{1}, \ldots, z_{n}\right\}$ in latent space
- α : Real-valued scaling parameter

Stochastic Model [HRH02]

Ties are statistically independent:

$$
\operatorname{Pr}[Y \mid Z, \alpha] \triangleq \prod_{i \neq j} \operatorname{Pr}\left[y_{i, j} \mid z_{i}, z_{j}, \alpha\right]
$$

Network

	a	b	c	d	e
a	-	1	0	1	0
b	1	-	0	1	0
c	0	0	-	0	1
d	1	1	0	-	0
e	0	0	1	0	-

LSE - Stochastic Model

Logistic Regression Model [HRH02]

$$
\log \operatorname{odds}\left(y_{i, j}=1 \mid z_{i}, z_{j}, \alpha\right)=\alpha-\left\|z_{i}-z_{j}\right\| .
$$

Define $\eta_{i, j} \triangleq \alpha-\left\|z_{i}-z_{j}\right\|$. We have

Stretch

Spread

To maximize $\operatorname{Pr}[Y \mid \eta]$:

- Minimize Stretch: $\sum_{i \neq j} \eta_{i, j} y_{i, j} \Rightarrow$ Shrinks long edges.
- Maximize Spread: $-\sum_{i \neq j} \log \left(1+e^{\eta_{i, j}}\right) \Rightarrow$ Keeps points apart.

LSE - Efficient cost computation

Computational Problem

Given an $n \times n$ matrix Y, determine Z and α to maximize $\operatorname{Pr}[Y \mid Z, \alpha]$.

- Method: Markov-Chain Monte Carlo (MCMC):
- Perturb current point locations: $Z \rightarrow Z^{*}$.
- Compute change in probability: $\rho=\frac{\operatorname{Pr}\left[Y \mid Z^{*}, \alpha\right]}{\operatorname{Pr}[Y \mid Z, \alpha]}$.
- Accept change with probability $\min (1, \rho)$.
- Rinse and repeat.
- Issues:
- Computing $\operatorname{Pr}[Y \mid Z, \alpha]$ takes quadratic time.
- Use a spatial index to store spatial relationships.
- The index must be dynamic.

LSE - Efficient cost computation

Computational Problem

Given an $n \times n$ matrix Y, determine Z and α to maximize $\operatorname{Pr}[Y \mid Z, \alpha]$.

- Method: Markov-Chain Monte Carlo (MCMC):
- Perturb current point locations: $Z \rightarrow Z^{*}$.
- Compute change in probability: $\rho=\frac{\operatorname{Pr}\left[Y \mid Z^{*}, \alpha\right]}{\operatorname{Pr}[Y \mid Z, \alpha]}$.
- Accept change with probability $\min (1, \rho)$.
- Rinse and repeat.
- Issues:
- Computing $\operatorname{Pr}[Y \mid Z, \alpha]$ takes quadratic time.
- Use a spatial index to store spatial relationships.
- The index must be dynamic.

Computational Tools - Nets

Net

P is a finite set of points in a \mathbb{R}^{d}. Given $r>0$, an r-net for P is a subset $X \subseteq P$ such that,

$$
\begin{aligned}
& \max _{p \in M} \operatorname{dist}(p, X)<r \quad \text { and } \\
& \min _{\substack{x, x^{\prime} \in X \\
x \neq x^{\prime}}}\left\|x-x^{\prime}\right\| \geq r .
\end{aligned}
$$

Net Trees

Net Tree

- The leaves of the tree consists of the points of P.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a $\left(2^{i}\right)$-net for $P^{(i-1)}$.
- Each node on level $i-1$ is associated with a parent, at level i, which lies lies within distance 2^{i}.

Net Trees

Net Tree

- The leaves of the tree consists of the points of P.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a $\left(2^{i}\right)$-net for $P^{(i-1)}$.
- Each node on level $i-1$ is associated with a parent, at level i, which lies lies within distance 2^{i}.

Net Trees

Net Tree

- The leaves of the tree consists of the points of P.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a $\left(2^{i}\right)$-net for $P^{(i-1)}$.
- Each node on level $i-1$ is associated with a parent, at level i, which lies lies within distance 2^{i}.

Net Trees

Net Tree

- The leaves of the tree consists of the points of P.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a $\left(2^{i}\right)$-net for $P^{(i-1)}$.
- Each node on level $i-1$ is associated with a parent, at level i, which lies lies within distance 2^{i}.

Well-Separated Pair Decompositions (WSPD)

Well-Separated Pair Decomposition

- n points determine $O\left(n^{2}\right)$ pairs
- A and B are s-well separated if they can be enclosed in balls of radius r that are separated by at least $s \cdot r$
- A WSPD of a point set P is a collection of well-separated pairs $\left(A_{i}, B_{i}\right)$ covering all pairs of the set
- An n-element point set in dimension d has a WSPD of size $O\left(s^{d} n\right)=O(n)$ [CaK95]

Computational Issues

Main Computational Issues

- Spread: $-\sum_{i \neq j} \log \left(1+e^{\eta_{i, j}}\right)$
- Stretch: $\sum_{i \neq j} \eta_{i, j} y_{i, j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Computational Issues

Main Computational Issues

- Spread: $-\sum_{i \neq j} \log \left(1+e^{\eta_{i, j}}\right) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i, j} y_{i, j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Computational Issues

Main Computational Issues

- Spread: $-\sum_{i \neq j} \log \left(1+e^{\eta_{i, j}}\right) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i, j} y_{i, j} \Rightarrow$ Power-series expansion
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Computational Issues

Main Computational Issues

- Spread: $-\sum_{i \neq j} \log \left(1+e^{\eta_{i, j}}\right) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i, j} y_{i, j} \Rightarrow$ Power-series expansion
- Clustered Motion: Moving blocks of points efficiently \Rightarrow WSPDs
- Dynamics: Updating the data structures

Computational Issues - Spread

Spread Term:

$$
-\sum_{i \neq j} \log \left(1+e^{\alpha-\left\|z_{i}-z_{j}\right\|}\right)
$$

- Independent of edges
- Dominated by nearby objects (Tends quickly to zero as $\left\|z_{i}-z_{j}\right\|$ increases)
- Proposed Approach: Locally sensitive sampling:
- Compute a WSPD with a low separation factor
- This provides a crude estimate of the distance distribution
- Sample pairs at random, favoring pairs that are close

Computational Issues - Stretch

Stretch Term: $\sum_{i \neq j} \eta_{i, j} y_{i, j}=\sum_{(i, j) \in E}\left(\alpha-\left\|z_{i}-z_{j}\right\|\right)$

$$
=\alpha|E|-\sum_{(i, j) \in E}\left\|z_{i}-z_{j}\right\| .
$$

- Computable in time proportional to the number of edges
- Sparse Graphs: $(|E|=O(n))$ Compute by brute force
- Dense Graphs: $(|E| \gg O(n))$
- Euclidean Distance: Approximate through a combination of power-series expansion and WSPDs (as in FMM)
- Squared Euclidean Distance: Efficient block motion

Computational Issues - Stretch with Squared Distances

Stretch with Squared Distances: $\alpha|E|-\sum_{(i, j) \in E}\left\|z_{i}-z_{j}\right\|^{2}$

Preprocessing

- Build a WSPD $\Phi=\left\{\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots\right\}$.
- For each pair $(A, B) \in \Phi$, let $E_{A, B}=|E \cap(A \times B)|$. Maintain:
- Weight: $w_{A, B}=\left|E_{A, B}\right|$
- Centroid Displacement Vector:

$$
V_{A, B}=\frac{1}{W_{A, B}} \sum_{(a, b) \in E_{A, B}}(b-a)
$$

- Base Stretch: $\Delta_{A, B}=\frac{1}{w_{A, B}} \sum_{(a, b) \in E_{A, B}}\|b-a\|^{2}$

Computational Issues - Stretch with Squared Distances

Stretch with Squared Distances: $\alpha|E|-\sum_{(i, j) \in E}\left\|z_{i}-z_{j}\right\|^{2}$

Block-Motion Update

If B is translated by t relative to A, then can update $\Delta_{A, B}$ in $O(1)$ time.

$$
\begin{aligned}
\Delta_{A, B+t} & =\frac{1}{w_{A, B}} \sum_{(a, b)}\|(b+t)-a\|^{2}=\frac{1}{w_{A, B}} \sum_{(a, b)}\|t+(b-a)\|^{2} \\
& =\frac{1}{w_{A, B}} \sum_{(a, b)}(t \cdot t)+2(t \cdot(b-a))+(b-a) \cdot(b-a) \\
& =\frac{1}{w_{A, B}}\left(w_{A, B}(t \cdot t)+2\left(t \cdot \sum_{(a, b)}(b-a)\right)+\sum_{(a, b)}\|b-a\|^{2}\right) \\
& =(t \cdot t)+2\left(t \cdot V_{A, B}\right)+\Delta_{A, B} .
\end{aligned}
$$

Computational Issues - Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in $O(k)$ time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values, $w_{A, B}, V_{A, B}, \Delta_{A, B}$ are maintained in the net tree.
- Updates to block membership can be performed efficiently in $O(\log n)$ time.
- Standard Euclidean Distances: Can approximate using power series.

Computational Issues - Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in $O(k)$ time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values, $w_{A, B}, V_{A, B}, \Delta_{A, B}$ are maintained in the net tree.
- Updates to block membership can be performed efficiently in $O(\log n)$ time.
- Standard Euclidean Distances: Can approximate using power series.

Future Work

- Continue to refine computational methods
- Prototype algorithms and data structures
- Empirical analysis of accuracy and efficiency

Thank you!

Bibliography

- [CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach., 42:67-90, 1995.
- [HRH02] P. D. Hoff, A. E. Raftery, and M. S Handcock. Latent space approaches to social network analysis. J. American Statistical Assoc., 97:1090-1098, 2002.
- [HRT07] M. S. Handcock and A. E. Raftery and J. M. Tantrum. Model-based clustering for social networks. J. R. Statist. Soc. A, 170, Part 2, 301-354, 2007.

