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Motivation

@ Social networks are used to represent a variety of
relational data.
@ Social networks exhibit structural features:

o Transitivity
@ Homophily on attributes
o Clustering

@ The likelihood of a tie is often correlated with the
similarity of attributes of the actors. (E.g.,
geography, age, ethnicity, income).

@ These attributes may be observed or unobserved.

@ A subset of nodes with many ties between them

may indicate clustering with respect to an
underlying (latent) social space.
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Latent Space Embedding (LSE)

Network

The likelihood of relational ties in social
networks depends on the similarity of attributes
in an unobserved latent space.

Problem Statement

Given a network Y = [y; ;] with n nodes, b
estimate a set of positions Z = {z,...,z,} in a Latent Space
RY that best describes this network relative to g

e
some model. /
(o}
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LSE — Stochastic Model

Input

@ Y: An n X n sociomatrix Network

(vij = 1 if there is a tie between i and j)

Model Parameters

@ Z: The positions of n individuals,
{z1,...,2,} in latent space

@ «: Real-valued scaling parameter
Stochastic Model [HRH02] X

Ties are statistically independent: s q Latent Space
d

PriY|Z.a] & [[Prlvij|zi.z0l

e
i#j c /
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LSE — Stochastic Model

Logistic Regression Model [HRH02] P

logodds(yi; = 1] 21,2,0) = a— |z — 7. <
Define n;j £ a — ||z — zj||. We have Stretch
log Pr[Y [n] = > (nijyij — log (1 +e)). b
i) T e
) VAN
Spread

To maximize Pr[Y | n]:
@ Minimize Stretch: »_.,;nijyi; = Shrinks long edges.
o Maximize Spread: — >, log (1 + e"/) = Keeps points apart.
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LSE — Efficient cost computation

Computational Problem
Given an n x n matrix Y, determine Z and « to maximize Pr[Y | Z, a].

@ Method: Markov-Chain Monte Carlo (MCMC):

o Perturb current point locations: Z — Z*.
o Compute change in probability: p = PP'E[\:J‘ZZ ’aoi].
@ Accept change with probability min(1, p).
<>

Rinse and repeat.

@ |ssues:
o Computing Pr[Y | Z, a] takes quadratic time.
@ Use a spatial index to store spatial relationships.
@ The index must be dynamic.
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Computational Tools — Nets

Net o . . )

P is a finite set of points in a RY. Given
r >0, an r-net for P is a subset X C P
such that,

dist(p, X) < d
Iz ist(p, X) r an

min ||x = x'|| > r.
x,x' exX
sl
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Net Trees

@ The leaves of the tree consists of the points of P.
@ The tree is based on a series of nets, P, P P") \where P
is a (2/)-net for PU—1).

@ Each node on level i — 1 is associated with a parent, at level i, which
lies lies within distance 2'.

®n
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Well-Separated Pair Decompositions (WSPD)

Well-Separated Pair Decomposition

@ n points determine O(n?) pairs

@ A and B are s-well separated if they
can be enclosed in balls of radius r
that are separated by at least s - r

@ A WSPD of a point set P is a
collection of well-separated pairs
(Ai, B;) covering all pairs of the set

@ An n-element point set in dimension d
has a WSPD of size O(s?n) = O(n)
[CaK95]
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Computational Issues

Main Computational Issues

o Spread: — >, log (1 + e")

o Stretch: > .. mi,yi,

@ Clustered Motion: Moving blocks of points efficiently

@ Dynamics: Updating the data structures
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Computational Issues

Main Computational Issues

o Spread: — >, log(1+e"i) = Locally sensitive sampling

o Stretch: 37, mi yij = Power-series expansion

@ Clustered Motion: Moving blocks of points efficiently = WSPDs

@ Dynamics: Updating the data structures
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Computational Issues — Spread

Spread Term:
= log (14 eIl

i#]

@ Independent of edges

@ Dominated by nearby objects
(Tends quickly to zero as ||z; — z;|| increases)

@ Proposed Approach: Locally sensitive sampling:

o Compute a WSPD with a low separation factor
o This provides a crude estimate of the distance distribution
o Sample pairs at random, favoring pairs that are close
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Computational Issues — Stretch

Stretch Term: Zni,jyhj = Z (o —[lzi — z)

i#j (iJ)€E

ofE[ = Y llzi —z].

(iJ)€E

@ Computable in time proportional to the number of edges
@ Sparse Graphs: (|E| = O(n)) Compute by brute force
@ Dense Graphs: (|E| > O(n))

o Euclidean Distance: Approximate through a combination of
power-series expansion and WSPDs (as in FMM)
@ Squared Euclidean Distance: Efficient block motion
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Computational Issues — Stretch with Squared Distances

Stretch with Squared Distances: o E| — 32 ¢ [z — z||2

Preprocessing

@ Build a WSPD ¢ = {(A1, B1), (A2, B2), ...}
o For each pair (A, B) € @, let
Eag = |E N (A x B)|. Maintain:
9 Weight: WA,B = ‘EA75|

@ Centroid Displacement Vector:
1
Vag = wA,B Z(avb)EEA,B(b —a)

o Base Stretch: Aap = ﬁ D (abyckap 10— al|?

-
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Computational Issues — Stretch with Squared Distances

Stretch with Squared Distances: a|E| — 3 < llzi — 7|12

Block-Motion Update

If B is translated by t relative to A, then can update Ay g in O(1) time.

Aapre = iZII(bJrf )—al? = iZIIH a)||?

(ab (ab
_ WiBZ(t-t)+2(t~(b—a))+(b—a)~(b—a)
7 (a,b)
- WiB was(t-t)+2(t- S (b—a)+ Y |Ib— al?

(a,b)
= (t . t) + 2(t . VA,B) + AA,B-
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Computational Issues — Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of
points in O(k) time.

@ Use the net tree to define blocks at various
resolutions.

@ WSPD and associated values, wa g, Va g, Aa s
are maintained in the net tree.

@ Updates to block membership can be performed
efficiently in O(log n) time.

@ Standard Euclidean Distances: Can approximate
using power series.
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Future Work

@ Continue to refine computational methods
@ Prototype algorithms and data structures

@ Empirical analysis of accuracy and efficiency



Thank you!
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