Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions

Implementation Issues for Latent Space Embedding

Minkyoung Cho, David Mount, and Eunhui Park

Department of Computer Science University of Maryland, College Park

MURI Meeting - May 25, 2010

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
●0000			

Motivation

- Social networks are used to represent a variety of relational data.
- Social networks exhibit structural features:
 - Transitivity
 - Homophily on attributes
 - Clustering
- The likelihood of a tie is often correlated with the similarity of attributes of the actors. (E.g., geography, age, ethnicity, income).
- These attributes may be observed or unobserved.
- A subset of nodes with many ties between them may indicate clustering with respect to an underlying (latent) social space.

Latent Space Embedding (LSE)

Hypothesis

The likelihood of relational ties in social networks depends on the similarity of attributes in an **unobserved latent space**.

Problem Statement

Given a network $Y = [y_{i,j}]$ with *n* nodes, estimate a set of positions $Z = \{z_1, \ldots, z_n\}$ in \mathbb{R}^d that best describes this network relative to some model.

Network

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	000000	000

LSE — Stochastic Model

$$\Pr[Y \mid Z, \alpha] \triangleq \prod_{i \neq j} \Pr[y_{i,j} \mid z_i, z_j, \alpha]$$

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	000000	000

LSE — Stochastic Model

Spread

To maximize $\Pr[Y \mid \eta]$:

- Minimize Stretch: $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$ Shrinks long edges.
- Maximize Spread: $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$ Keeps points apart.

LSE — Efficient cost computation

Computational Problem

Given an $n \times n$ matrix Y, determine Z and α to maximize $\Pr[Y \mid Z, \alpha]$.

- Method: Markov-Chain Monte Carlo (MCMC):
 - Perturb current point locations: $Z \rightarrow Z^*$.
 - Compute change in probability: $\rho = \frac{\Pr[Y|Z^*,\alpha]}{\Pr[Y|Z,\alpha]}$.
 - Accept change with probability $\min(1, \rho)$.
 - Rinse and repeat.
- Issues:
 - Computing $\Pr[Y \mid Z, \alpha]$ takes quadratic time.
 - Use a spatial index to store spatial relationships.
 - The index must be dynamic.

LSE — Efficient cost computation

Computational Problem

Given an $n \times n$ matrix Y, determine Z and α to maximize $\Pr[Y \mid Z, \alpha]$.

- Method: Markov-Chain Monte Carlo (MCMC):
 - Perturb current point locations: $Z \rightarrow Z^*$.
 - Compute change in probability: $\rho = \frac{\Pr[Y|Z^*,\alpha]}{\Pr[Y|Z,\alpha]}$.
 - Accept change with probability $\min(1, \rho)$.
 - Rinse and repeat.
- Issues:
 - Computing $\Pr[Y \mid Z, \alpha]$ takes quadratic time.
 - Use a spatial index to store spatial relationships.
 - The index must be dynamic.

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
	000		

Computational Tools – Nets

Net

P is a finite set of points in a \mathbb{R}^d . Given r > 0, an *r*-net for *P* is a subset $X \subseteq P$ such that,

$$\max_{\substack{p \in M \\ x \neq x'}} dist(p, X) < r \text{ and}$$
$$\min_{\substack{x, x' \in X \\ x \neq x'}} ||x - x'|| \ge r.$$

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
	000		

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, P⁽¹⁾, P⁽²⁾, ..., P^(h), where P⁽ⁱ⁾ is a (2ⁱ)-net for P⁽ⁱ⁻¹⁾.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
	000		

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a (2^i) -net for $P^{(i-1)}$.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
	000		

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a (2^i) -net for $P^{(i-1)}$.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
	000		

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a (2^i) -net for $P^{(i-1)}$.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

Well-Separated Pair Decompositions (WSPD)

Well-Separated Pair Decomposition

- *n* points determine $O(n^2)$ pairs
- A and B are s-well separated if they can be enclosed in balls of radius r that are separated by at least $s \cdot r$
- A WSPD of a point set P is a collection of well-separated pairs (A_i, B_i) covering all pairs of the set
- An n-element point set in dimension d has a WSPD of size O(s^d n) = O(n) [CaK95]

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	•00000	000

- Spread: $-\sum_{i\neq j} \log (1+e^{\eta_{i,j}})$
- Stretch: $\sum_{i \neq j} \eta_{i,j} y_{i,j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	•00000	000

- Spread: $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i,j} y_{i,j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	•00000	000

- Spread: $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$ Power-series expansion
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	•00000	000

- Spread: $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$ Locally sensitive sampling
- Stretch: $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$ Power-series expansion
- Clustered Motion: Moving blocks of points efficiently \Rightarrow WSPDs
- Dynamics: Updating the data structures

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
		00000	

Computational Issues – Spread

Spread Term:

$$-\sum_{i
eq j}\log\left(1+e^{lpha-\|z_i-z_j\|}
ight)$$

- Independent of edges
- Dominated by nearby objects (Tends quickly to zero as ||z_i - z_i|| increases)
- Proposed Approach: Locally sensitive sampling:
 - Compute a WSPD with a low separation factor
 - This provides a crude estimate of the distance distribution
 - Sample pairs at random, favoring pairs that are close

~	 ~		
00000	000	000000	000
Latent Space Embedding	Computational Tools	Computational Issues	Conclusions

Computational Issues – Stretch

Stretch Term:
$$\sum_{i \neq j} \eta_{i,j} y_{i,j} = \sum_{\substack{(i,j) \in E}} (\alpha - ||z_i - z_j||)$$
$$= \alpha |E| - \sum_{\substack{(i,j) \in E}} ||z_i - z_j||.$$

- Computable in time proportional to the number of edges
- Sparse Graphs: (|E| = O(n)) Compute by brute force
- Dense Graphs: $(|E| \gg O(n))$
 - Euclidean Distance: Approximate through a combination of power-series expansion and WSPDs (as in FMM)
 - Squared Euclidean Distance: Efficient block motion

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	000000	000

Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances: $\alpha |E| - \sum_{(i,j) \in E} ||z_i - z_j||^2$

Preprocessing

- Build a WSPD $\Phi = \{(A_1, B_1), (A_2, B_2), \ldots\}.$
- For each pair $(A, B) \in \Phi$, let $E_{A,B} = |E \cap (A \times B)|$. Maintain:
 - Weight: $w_{A,B} = |E_{A,B}|$
 - Centroid Displacement Vector: $V_{A,B} = \frac{1}{w_{A,B}} \sum_{(a,b) \in E_{A,B}} (b-a)$

• Base Stretch:
$$\Delta_{A,B} = \frac{1}{w_{A,B}} \sum_{(a,b) \in E_{A,B}} \|b - a\|^2$$

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
		000000	

Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances: $\alpha |E| - \sum_{(i,j) \in E} ||z_i - z_j||^2$

Block-Motion Update

If B is translated by t relative to A, then can update $\Delta_{A,B}$ in O(1) time.

$$\begin{split} \Delta_{A,B+t} &= \frac{1}{w_{A,B}} \sum_{(a,b)} \| (b+t) - a \|^2 = \frac{1}{w_{A,B}} \sum_{(a,b)} \| t + (b-a) \|^2 \\ &= \frac{1}{w_{A,B}} \sum_{(a,b)} (t \cdot t) + 2(t \cdot (b-a)) + (b-a) \cdot (b-a) \\ &= \frac{1}{w_{A,B}} \left(w_{A,B}(t \cdot t) + 2(t \cdot \sum_{(a,b)} (b-a)) + \sum_{(a,b)} \| b-a \|^2 \right) \\ &= (t \cdot t) + 2(t \cdot V_{A,B}) + \Delta_{A,B}. \end{split}$$

		Embeddings
0000	0	

Computational Tools 000 Computational Issues

Conclusions 000

Computational Issues – Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in O(k) time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values, $w_{A,B}$, $V_{A,B}$, $\Delta_{A,B}$ are maintained in the net tree.
- Updates to block membership can be performed efficiently in $O(\log n)$ time.
- Standard Euclidean Distances: Can approximate using power series.

		Embeddings
0000	0	

Computational Tools 000 Computational Issues

Conclusions 000

Computational Issues – Hierarchical Block Motion

Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in O(k) time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values, $w_{A,B}$, $V_{A,B}$, $\Delta_{A,B}$ are maintained in the net tree.
- Updates to block membership can be performed efficiently in $O(\log n)$ time.
- Standard Euclidean Distances: Can approximate using power series.

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
			•00

Future Work

- Continue to refine computational methods
- Prototype algorithms and data structures
- Empirical analysis of accuracy and efficiency

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
			000

Thank you!

Latent Space Embeddings	Computational Tools	Computational Issues	Conclusions
00000	000	000000	000
Bibliography			

- [CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach., 42:67–90, 1995.
- [HRH02] P. D. Hoff, A. E. Raftery, and M. S Handcock. Latent space approaches to social network analysis. J. American Statistical Assoc., 97:1090–1098, 2002.
- [HRT07] M. S. Handcock and A. E. Raftery and J. M. Tantrum. Model-based clustering for social networks. J. R. Statist. Soc. A, 170, Part 2, 301–354, 2007.