| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         |                     |                      |             |
|                         |                     |                      |             |

# Implementation Issues for Latent Space Embedding

### Minkyoung Cho, David Mount, and Eunhui Park

Department of Computer Science University of Maryland, College Park

MURI Meeting - May 25, 2010

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| ●0000                   |                     |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

### Motivation

- Social networks are used to represent a variety of relational data.
- Social networks exhibit structural features:
  - Transitivity
  - Homophily on attributes
  - Clustering
- The likelihood of a tie is often correlated with the similarity of attributes of the actors. (E.g., geography, age, ethnicity, income).
- These attributes may be observed or unobserved.
- A subset of nodes with many ties between them may indicate clustering with respect to an underlying (latent) social space.



# Latent Space Embedding (LSE)

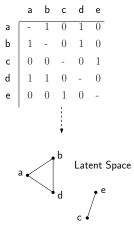
#### Hypothesis

The likelihood of relational ties in social networks depends on the similarity of attributes in an **unobserved latent space**.

#### **Problem Statement**

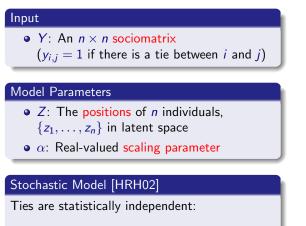
Given a network  $Y = [y_{i,j}]$  with *n* nodes, estimate a set of positions  $Z = \{z_1, \ldots, z_n\}$  in  $\mathbb{R}^d$  that best describes this network relative to some model.

#### Network

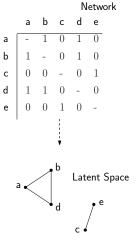


| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | 000000               | 000         |

# LSE — Stochastic Model

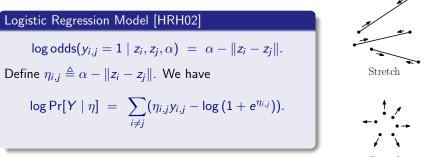


$$\Pr[Y \mid Z, \alpha] \triangleq \prod_{i \neq j} \Pr[y_{i,j} \mid z_i, z_j, \alpha]$$



| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | 000000               | 000         |
|                         |                     |                      |             |

### LSE — Stochastic Model



Spread

To maximize  $\Pr[Y \mid \eta]$ :

- Minimize Stretch:  $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$  Shrinks long edges.
- Maximize Spread:  $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$  Keeps points apart.

# LSE — Efficient cost computation

### Computational Problem

Given an  $n \times n$  matrix Y, determine Z and  $\alpha$  to maximize  $\Pr[Y \mid Z, \alpha]$ .

- Method: Markov-Chain Monte Carlo (MCMC):
  - Perturb current point locations:  $Z \rightarrow Z^*$ .
  - Compute change in probability:  $\rho = \frac{\Pr[Y|Z^*,\alpha]}{\Pr[Y|Z,\alpha]}$ .
  - Accept change with probability  $\min(1, \rho)$ .
  - Rinse and repeat.
- Issues:
  - Computing  $\Pr[Y \mid Z, \alpha]$  takes quadratic time.
  - Use a spatial index to store spatial relationships.
  - The index must be dynamic.



# LSE — Efficient cost computation

#### Computational Problem

Given an  $n \times n$  matrix Y, determine Z and  $\alpha$  to maximize  $\Pr[Y \mid Z, \alpha]$ .

- Method: Markov-Chain Monte Carlo (MCMC):
  - Perturb current point locations:  $Z \rightarrow Z^*$ .
  - Compute change in probability:  $\rho = \frac{\Pr[Y|Z^*,\alpha]}{\Pr[Y|Z,\alpha]}$ .
  - Accept change with probability  $\min(1, \rho)$ .
  - Rinse and repeat.
- Issues:
  - Computing  $\Pr[Y \mid Z, \alpha]$  takes quadratic time.
  - Use a spatial index to store spatial relationships.
  - The index must be dynamic.



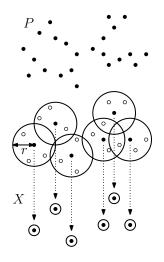
| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         | 000                 |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

# Computational Tools – Nets

### Net

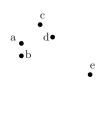
*P* is a finite set of points in a  $\mathbb{R}^d$ . Given r > 0, an *r*-net for *P* is a subset  $X \subseteq P$  such that,

$$\max_{\substack{p \in M \\ x \neq x'}} dist(p, X) < r \text{ and}$$
$$\min_{\substack{x, x' \in X \\ x \neq x'}} ||x - x'|| \ge r.$$



| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         | 000                 |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

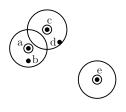
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, P<sup>(1)</sup>, P<sup>(2)</sup>, ..., P<sup>(h)</sup>, where P<sup>(i)</sup> is a (2<sup>i</sup>)-net for P<sup>(i-1)</sup>.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2<sup>i</sup>.

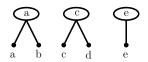




| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         | 000                 |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

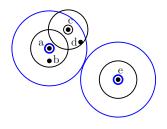
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets,  $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$ , where  $P^{(i)}$  is a  $(2^i)$ -net for  $P^{(i-1)}$ .
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2<sup>i</sup>.

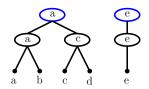




| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         | 000                 |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

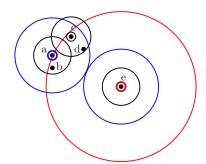
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets,  $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$ , where  $P^{(i)}$  is a  $(2^i)$ -net for  $P^{(i-1)}$ .
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2<sup>i</sup>.

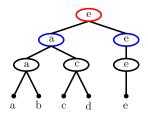




| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         | 000                 |                      |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets,  $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$ , where  $P^{(i)}$  is a  $(2^i)$ -net for  $P^{(i-1)}$ .
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2<sup>i</sup>.

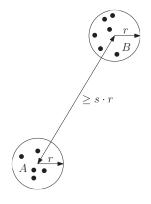




# Well-Separated Pair Decompositions (WSPD)

### Well-Separated Pair Decomposition

- *n* points determine  $O(n^2)$  pairs
- A and B are s-well separated if they can be enclosed in balls of radius r that are separated by at least  $s \cdot r$
- A WSPD of a point set P is a collection of well-separated pairs (A<sub>i</sub>, B<sub>i</sub>) covering all pairs of the set
- An n-element point set in dimension d has a WSPD of size O(s<sup>d</sup> n) = O(n) [CaK95]



| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | •00000               | 000         |
|                         |                     |                      |             |

- Spread:  $-\sum_{i\neq j} \log (1+e^{\eta_{i,j}})$
- Stretch:  $\sum_{i \neq j} \eta_{i,j} y_{i,j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | •00000               | 000         |
|                         |                     |                      |             |

- Spread:  $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$  Locally sensitive sampling
- Stretch:  $\sum_{i \neq j} \eta_{i,j} y_{i,j}$
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | •00000               | 000         |
|                         |                     |                      |             |

- Spread:  $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$  Locally sensitive sampling
- Stretch:  $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$  Power-series expansion
- Clustered Motion: Moving blocks of points efficiently
- Dynamics: Updating the data structures

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | •00000               | 000         |
|                         |                     |                      |             |

- Spread:  $-\sum_{i \neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$  Locally sensitive sampling
- Stretch:  $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$  Power-series expansion
- Clustered Motion: Moving blocks of points efficiently  $\Rightarrow$  WSPDs
- Dynamics: Updating the data structures

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         |                     | 00000                |             |
|                         |                     |                      |             |
|                         |                     |                      |             |

### Computational Issues – Spread

### Spread Term:

$$-\sum_{i
eq j}\log\left(1+e^{lpha-\|z_i-z_j\|}
ight)$$

- Independent of edges
- Dominated by nearby objects (Tends quickly to zero as ||z<sub>i</sub> - z<sub>i</sub>|| increases)
- Proposed Approach: Locally sensitive sampling:
  - Compute a WSPD with a low separation factor
  - This provides a crude estimate of the distance distribution
  - Sample pairs at random, favoring pairs that are close

| ~                      | <br>~               |                      |             |
|------------------------|---------------------|----------------------|-------------|
|                        |                     |                      |             |
| 00000                  | 000                 | 000000               | 000         |
| Latent Space Embedding | Computational Tools | Computational Issues | Conclusions |

### Computational Issues – Stretch

Stretch Term: 
$$\sum_{i \neq j} \eta_{i,j} y_{i,j} = \sum_{\substack{(i,j) \in E}} (\alpha - ||z_i - z_j||)$$
$$= \alpha |E| - \sum_{\substack{(i,j) \in E}} ||z_i - z_j||.$$

- Computable in time proportional to the number of edges
- Sparse Graphs: (|E| = O(n)) Compute by brute force
- Dense Graphs:  $(|E| \gg O(n))$ 
  - Euclidean Distance: Approximate through a combination of power-series expansion and WSPDs (as in FMM)
  - Squared Euclidean Distance: Efficient block motion

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | 000000               | 000         |
|                         |                     |                      |             |

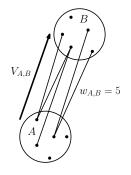
### Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances:  $\alpha |E| - \sum_{(i,j) \in E} ||z_i - z_j||^2$ 

#### Preprocessing

- Build a WSPD  $\Phi = \{(A_1, B_1), (A_2, B_2), \ldots\}.$
- For each pair  $(A, B) \in \Phi$ , let  $E_{A,B} = |E \cap (A \times B)|$ . Maintain:
  - Weight:  $w_{A,B} = |E_{A,B}|$
  - Centroid Displacement Vector:  $V_{A,B} = \frac{1}{w_{A,B}} \sum_{(a,b) \in E_{A,B}} (b-a)$

• Base Stretch: 
$$\Delta_{A,B} = \frac{1}{w_{A,B}} \sum_{(a,b) \in E_{A,B}} \|b - a\|^2$$



| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         |                     | 000000               |             |
|                         |                     |                      |             |

### Computational Issues – Stretch with Squared Distances

Stretch with Squared Distances:  $\alpha |E| - \sum_{(i,j) \in E} ||z_i - z_j||^2$ 

#### Block-Motion Update

If B is translated by t relative to A, then can update  $\Delta_{A,B}$  in O(1) time.

$$\begin{split} \Delta_{A,B+t} &= \frac{1}{w_{A,B}} \sum_{(a,b)} \| (b+t) - a \|^2 = \frac{1}{w_{A,B}} \sum_{(a,b)} \| t + (b-a) \|^2 \\ &= \frac{1}{w_{A,B}} \sum_{(a,b)} (t \cdot t) + 2(t \cdot (b-a)) + (b-a) \cdot (b-a) \\ &= \frac{1}{w_{A,B}} \left( w_{A,B}(t \cdot t) + 2(t \cdot \sum_{(a,b)} (b-a)) + \sum_{(a,b)} \| b-a \|^2 \right) \\ &= (t \cdot t) + 2(t \cdot V_{A,B}) + \Delta_{A,B}. \end{split}$$

|      |   | Embeddings |
|------|---|------------|
| 0000 | 0 |            |

Computational Tools 000 Computational Issues

Conclusions 000

### Computational Issues – Hierarchical Block Motion

### Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in O(k) time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values,  $w_{A,B}$ ,  $V_{A,B}$ ,  $\Delta_{A,B}$  are maintained in the net tree.
- Updates to block membership can be performed efficiently in  $O(\log n)$  time.
- Standard Euclidean Distances: Can approximate using power series.



|      |   | Embeddings |
|------|---|------------|
| 0000 | 0 |            |

Computational Tools 000 Computational Issues

Conclusions 000

### Computational Issues – Hierarchical Block Motion

### Hierarchical Block-Motion

If squared distances are used, we can move k blocks of points in O(k) time.

- Use the net tree to define blocks at various resolutions.
- WSPD and associated values,  $w_{A,B}$ ,  $V_{A,B}$ ,  $\Delta_{A,B}$  are maintained in the net tree.
- Updates to block membership can be performed efficiently in  $O(\log n)$  time.
- Standard Euclidean Distances: Can approximate using power series.



| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         |                     |                      | •00         |
|                         |                     |                      |             |
|                         |                     |                      |             |

### Future Work

- Continue to refine computational methods
- Prototype algorithms and data structures
- Empirical analysis of accuracy and efficiency

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
|                         |                     |                      | 000         |
|                         |                     |                      |             |

# Thank you!

| Latent Space Embeddings | Computational Tools | Computational Issues | Conclusions |
|-------------------------|---------------------|----------------------|-------------|
| 00000                   | 000                 | 000000               | 000         |
|                         |                     |                      |             |
|                         |                     |                      |             |
| Bibliography            |                     |                      |             |

- [CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach., 42:67–90, 1995.
- [HRH02] P. D. Hoff, A. E. Raftery, and M. S Handcock. Latent space approaches to social network analysis. J. American Statistical Assoc., 97:1090–1098, 2002.
- [HRT07] M. S. Handcock and A. E. Raftery and J. M. Tantrum. Model-based clustering for social networks. J. R. Statist. Soc. A, 170, Part 2, 301–354, 2007.