Scalable Methods for the Analysis of Network-Based Data

MURI Project: University of California, Irvine

Project Meeting

May 25th 2010

Principal Investigator: Padhraic Smyth
Today’s Meeting

• Goals
 – Review our research progress
 – Discussion, questions, interaction
 – Feedback from visitors

• Format
 – Introduction
 – Research talks
 • 20 and 30 minute slots
 • 5 mins at end for questions/discussion
 – Question/discussion encouraged during talks
 – Several breaks for discussion
Project TimeLine

• Project start/end
 – Start date: May 1 2008
 – End date: April 30 2011/2013

• Meetings
 – Nov 2008: All-Hands Kickoff Meeting
 – April 2009: Working Meeting
 – August 2009: Working Meeting
 – December 2009: All-Hands Annual Review
 – May 2010: Working Meeting
MURI Investigators

Padhraic Smyth UCI
David Eppstein UCI
Carter Butts UCI
Michael Goodrich UCI

Mark Handcock UCLA
Dave Mount U Maryland
Dave Hunter Penn State
Graduate Student Progress

Highlights

- Presenting talks at multiple international conferences this summer
 - Sunbelt International Social Networks conference (Jasny, Spiro, Fitzhugh, Almquist)
 - ACM SIGKDD Conference (DuBois)
 - American Sociological Meeting (Marcum, Jasny, Spiro, Fitzhugh, Almquist)
 - + more

- Workshop organization/instruction
 - Political Networks Conference (Spiro, Fitzhugh, Almquist)

- Summer school on social network analysis
 - DuBois and Almquist received scholarships to attend

- Faculty position at U Mass Amherst (Acton)
- Best paper awards or nominations (Spiro, Hummel)
- National fellowships (DuBois, Asuncion)
Publications

Fundamentals of Exponential Random Graph Models and Network Analysis

Scalable Algorithms for Statistical Network Modeling

Publications

Geometric and Spatial Embedding Methods

Publications

Dynamic and Relational Event Models

Statistical Modeling of Text and Networks

Measurement of Large Scale Networks
Data

Statistical Models

Scalable Algorithms

Evaluation

Software and Applications

P. Smyth: Networks MURI Project Meeting, May 25 2010: 10
Statistical Modeling of Network Data

Statistics = principled approach for inference from noisy data

Integration of different sources of information
- e.g., combining edge information with node attributes

Basis for optimal prediction
- computation of conditional probabilities/expectation

Principles for handling noisy measurements
- e.g., noisy and missing edges

Quantification of uncertainty
- e.g., how likely is it that network behavior has changed?
Limitations of Prior Work

• Network data over time
 – Relatively little work on dynamic network data

• Heterogeneous data
 – e.g., few techniques for incorporating text, spatial information, etc, into network models

• Computational tractability
 – Many network modeling algorithms scale exponentially in the number of nodes n
 – Limits practical network sizes to order of $n = 100$ nodes
Computational Efficiency

- Parameter estimation can scale from $O(ne)$ to $O(2^{n(n-1)})$

- Algorithms and data structures for efficient computation
 - H-index for change-score statistics
 - Nets and net-trees
 - Efficient clique-finding algorithms
Example

- $G = \{V, E\}$
 - V = set of n nodes
 - E = set of directed binary edges

- Exponential random graph (ERG) model

$$P(G \mid \theta) = f(G ; \theta) / \text{normalization constant}$$

The normalization constant = sum over all possible graphs

How many graphs? $2^{n(n-1)}$

E.g., $n = 50$, we have $2^{2450} \sim 10^{245}$ graphs to sum over
Key Themes of our MURI Project

• Research on new statistical estimation techniques and models
 – e.g., principles of modeling and predicting networks over time

• Faster algorithms
 – e.g., efficient data structures and algorithms for very large data sets

• New algorithms for heterogeneous network data
 – Incorporating spatial information, text, other covariates

• Software
 – Make network inference software publicly-available (in R)
Key Themes of our MURI Project

Efficient Algorithms

New Statistical Methods

Richer models

Large Heterogeneous Data Sets

New Applications

Software
Complexities of Real Network Data

• Data types
 – Actors and ties
 – Covariates
 – Temporal events
 – Spatial
 – Text

• Structure
 – Hierarchies and clusters

• Measurement issues
 – Sampling
 – Missing data
DuBois and Smyth, 2010
Enron Email Data

- Messages per week (total)
- Number of senders

Sept 2001 (scandal revealed) to Dec 2001 (bankruptcy)
Daily and weekly variation

- Number of emails
- Time of day

Graphs illustrating daily and weekly variation.
Spatially-Embedded Network Data
Butts, Acton, Almquist, 2009
Missing Data

Missing Data

Handcock and Gile, 2008

\[
\begin{array}{cccc}
 & A & B & C & D \\
 A & - & 1 & 0 & 0 \\
 B & 0 & - & 1 & 1 \\
 C & 0 & 0 & - & 0 \\
 D & 1 & 1 & 1 & - \\
\end{array}
\]

\[
\begin{array}{cccc}
 & A & B & C & D \\
 A & - & \? & \? & \? \\
 B & \? & - & \? & \? \\
 C & 0 & 0 & - & 0 \\
 D & 1 & 1 & 1 & - \\
\end{array}
\]
Statistical Modeling Frameworks

• Exponential random graph models

• Latent-space models

• Relational event models

All 3 frameworks are related – many talks today will touch on at least one of these frameworks
h-index Data Structures

Eppstein and Spiro, 2009

h-index = maximum number such that
h vertices each have at least h neighbors
h-index Data Structures

Eppstein and Spiro, 2009

h-index = maximum number such that h vertices each have at least h neighbors

H = set of h high-degree vertices
L = remaining vertices

Can use H/L partitioning to efficiently compute and track graph statistics in statistical estimation algorithms
Nets and Net Trees

Cho, Mount, Park, 2009
Fast Sampling Methods

Asuncion et al, 2009
Evaluation and Prediction

- Evaluate algorithms on large real-world data sets
 - Disaster response
 - Katrina communication networks, World Trade Center disaster response data
 - Networks of documents
 - Political blogs, Wikipedia
 - Social activities on the Web
 - Twitter data, Facebook networks, email communication networks
 - International relations
 - ... and more

- Evaluation metrics
 - Computational efficiency
 - Goodness of fit and predictive accuracy
ONR Interests
(adapted from presentation/discussion in Nov 2008 by Martin Kruger, ONR)

- How does one select the features in an ERG model?
- How can one uniquely characterize a person or a network?
- Can a statistical model (e.g., a relational event model) be used to characterize the trajectory of an individual or a network over time?
- Can one do “activity recognition” in a network?
- Can one model the effect of exogenous changes (e.g., “shocks”) to a network over time?
- Importance of understanding social science aspect of network modeling: what are human motivations and goals driving network behavior?
Morning Session I

9:00 Introduction and review of project progress
 Padhraic Smyth (UCI)

9:20 Implementation issues for latent-space embeddings
 David Mount (U Maryland)

9:40 Near-optimal fixed parameter tractability of the Bron-Kerbosch
 algorithm for maximal cliques
 Darren Strash (UCI)

10:10 Methods for analysis of behavioral time-use data
 Chris Marcum (UCI)

10:30 BREAK
Morning Session II

10:50 Mixture models for event-based network data
 Chris DuBois (UCI)

11:10 Static and dynamic robustness in emergency-phase communication networks
 Sean Fitzhugh (UCI)

11:30 Bernoulli graph bounds for general random graph models
 Carter Butts (UCI)

LUNCH BREAK

12:00 Lunch for ALL meeting participants in 4011
Afternoon Session I

1:30 Social network analysis of Twitter data
Emma Spiro (UCI)

2:00 Logistic network regression for scalable analysis of dynamic relational data: an overview and case study
Zack Almquist (UCI)

2:20 Latent feature models for network data over time
Jimmy Foulds (UCI)

2:40 New directions in greedy routing on social networks: the membership dimension
Lowell Trott (UCI)

3:10 BREAK
Afternoon Session II

3:30 Bias-adjusted maximum likelihood estimation methods
 Dave Hunter (Penn State)

3:50 Composite likelihood methods for network estimation
 Arthur Asuncion (UCI)

4:10 Discussion and Wrap-up
 - AHM meeting in November/December
 - collaborative activities
 - action items

4:30 ADJOURN
Logistics

• Meals
 – Lunch in this room, 12 noon
 – Refreshment breaks at 10:30 and 3:10

• Wireless
 – Should be able to get 24-hour guest access from UCI network

• Slides will be posted online on the project Web site
 www.datalab.uci.edu/muri

• Questions and discussion are encouraged during talks!
Questions?
Preprints

R.M. Hummel, M.S. Handcock, D.R. Hunter, A steplength algorithm for fitting ERGMs, submitted, 2009

C. T. Butts, A behavioral micro-foundation for cross-sectional network models, preprint, 2009

C. T. Butts, A perfect sampling method for exponential random graph models, preprint, 2009

Tasks

A: Fast network estimation algorithms
 Eppstein, Butts

B: Spatial representations and network data
 Goodrich, Eppstein, Mount

C: Advanced network estimation techniques
 Handcock, Hunter

D: Scalable methods for relational events
 Butts

E: Network models with text data
 Smyth

F: Software for network inference and prediction
 Hunter
Estimation Algorithms

• We want $P(\text{parameters} \mid \text{data})$

• Exact algorithms are rare

• Approximate search
 – E.g., Markov chain Monte Carlo

• Exact solution of simpler objective function
 – E.g., pseudolikelihood v. likelihood
Collaboration Network

- Mike Goodrich
- David Eppstein
- Padhraic Smyth
- Dave Mount
- Carter Butts
- Dave Hunter
- Mark Handcock

P. Smyth: Networks MURI Project Meeting, May 25 2010: 41