Near-optimal Fixed-parameter Tractability of the Bron-Kerbosch Algorithm for Maximal Cliques

Darren Strash
Department of Computer Science UC Irvine

Joint work with David Eppstein and Maarten Löffler

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

Goal: Design an algorithm to list all maximal cliques

Goal: Design an algorithm to list all maximal cliques

Motivation

Motivation

Features in ERGM

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Document clustering for information retrieval

There may be many maximal cliques.

There may be many maximal cliques.

- -0

\bullet

There may be many maximal cliques.

Maximal Clique Listing Algorithms

Author	Year	Running Time
Bron and Kerbosch	1973	$? ? ?$
Tsukiyama et al.	1977	$O(n m \mu)$
Chiba and Nishizeki	1985	$O(\alpha m \mu)$
Makino and Uno	2004	$O\left(\Delta^{4} \mu\right)$

$n=$ number of vertices
$m=$ number of edges
$\mu=$ number of maximal cliques
$\alpha=$ arboricity
$\Delta=$ maximum degree of the graph

Tomita et al. (2006)

Tomita et al. (2006)

Worst-case optimal running time $O\left(3^{n / 3}\right)$

Tomita et al. (2006)

Worst-case optimal running time $O\left(3^{n / 3}\right)$

Computational experiments:

AMC $[14]$	AMC*	CLIQUES
261.27	$[14]$	
952.25	9.51	10.49
$3,601.09$	130.76	$\mathbf{1 0 . 2 0}$
$14,448.21$	431.20	$\mathbf{9 . 9 0}$
$35,866.69$	530.53	$\mathbf{1 0 . 9 5}$
$>24 \mathrm{~h}$	$1,066.62$	$\mathbf{1 2 . 9 7}$
$>24 \mathrm{~h}$	$4,350.94$	$\mathbf{1 6 . 8 5}$
$>24 \mathrm{~h}$	$15,655.05$	$\mathbf{3 3 . 7 5}$
$>24 \mathrm{~h}$	$>24 \mathrm{~h}$	$\mathbf{6 5 . 0 6}$
		$\mathbf{2 9 3 . 9 7}$

The Bron-Kerbosch Algorithm

Easy to understand
Easy to implement
There are many heuristics, which make it faster
Its variations work well in practice.
Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)
One variation is worst-case optimal ($O\left(3^{n / 3}\right)$ time $)$ Tomita et al. (2006)

The Bron-Kerbosch Algorithm

Easy to understand

Easy to implement

There are many heuristics, which make it faster

Its variations work well in practice.

Confirmed through computational experiments Johnston (1976), Koch (2001), Baum (2003)

One variation is worst-case optimal $\left(O\left(3^{n / 3}\right)\right.$ time $)$ Tomita et al. (2006)

Finding one maximal clique

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

proc BronKerbosch (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: for each vertex $v \in P$ do
5: \quad BronKerbosch $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
6: $\quad P \leftarrow P \backslash\{v\}$
7: $\quad X \leftarrow X \cup\{v\}$
8: end for

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm with Pivoting proc BronKerboschPivot (P, R, X)

1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

The Bron-Kerbosch Algorithm with Pivoting proc BronKerboschPivot (P, R, X)

1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to minimize $|P \backslash \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

The Bron-Kerbosch Algorithm with Pivoting proc BronKerboschPivot (P, R, X)

1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

The Bron-Kerbosch Algorithm with Pivoting

$$
T(n) \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right)
$$

The Bron-Kerbosch Algorithm with Pivoting

$$
T(n) \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right)
$$

$$
T(n)=O\left(3^{n / 3}\right)
$$

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

The Bron-Kerbosch Algorithm

All cliques in planar graphs may be listed in time $O(n)$ Chiba and Nishizeki (1985), Chrobak and Eppstein (1991)

The Bron-Kerbosch Algorithm

Want to characterize the running time with a parameter.
Let p be our parameter of choice.

An algorithm is fixed-parameter tractable with parameter p if it has running time

$$
f(p) n^{O(1)}
$$

The key is to avoid things like n^{p}.

Parameterize on Sparsity

Parameterize on Sparsity

degeneracy:

Parameterize on Sparsity

degeneracy:

The minimum integer d such that every subgraph of G has a vertex of degree d or less.

Degeneracy

Degeneracy

Degeneracy

degeneracy:

The minimum integer d such that there is an ordering of the vertices where each vertex has at most d neighbors later in the ordering.

$$
+
$$

$$
d=1
$$

Planar graphs have degeneracy at most 5

Degeneracy is easy to compute

d-degenerate graphs...

d-degenerate graphs...

cannot contain cliques with more than $d+1$ vertices
d-degenerate graphs...
cannot contain cliques with more than $d+1$ vertices

d-degenerate graphs...

cannot contain cliques with more than $d+1$ vertices

d-degenerate graphs...

cannot contain cliques with more than $d+1$ vertices

$>d$ later neighbors.
d-degenerate graphs...

d-degenerate graphs...

have fewer than $d n$ edges.

d-degenerate graphs...

have fewer than $d n$ edges.

$\leq d$ later neighbors.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other popular sparsity measures.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other popular sparsity measures.

Graphs generated by the preferential attachment mechanism of Barabási and Albert have low degeneracy.

proc BronKerboschDegeneracy (V, E)

1: for each vertex v_{i} in a degeneracy ordering $v_{0}, v_{1}, v_{2}, \ldots$ of (V, E) do
2: $\quad P \leftarrow \Gamma\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{n-1}\right\}$
3: $\quad X \leftarrow \Gamma\left(v_{i}\right) \cap\left\{v_{0}, \ldots, v_{i-1}\right\}$
4: $\quad \operatorname{BronKerboschPivot}\left(P,\left\{v_{i}\right\}, X\right)$
5: end for

$$
X
$$

$$
|P| \leq d
$$

Computing the pivot

Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

P

Computing the pivot

Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

Computing the pivot

Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

$$
O(|P|(|X|+|P|))
$$

proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for
proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

Find subgraph induced by v 's neighbors.

Find subgraph induced by v 's neighbors.

Find subgraph induced by v 's neighbors.

Find subgraph induced by v 's neighbors.

$$
X \cap \Gamma(v) \quad P \cap \Gamma(v)
$$

Find subgraph induced by v 's neighbors.

$$
\begin{gathered}
X \cap \Gamma(v) \\
O(|P|(|X|+|P|))
\end{gathered}
$$

proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for
proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

Remove v from P and add it to X.

卫 D

Remove v from P and add it to X.

卫 D

Remove v from P and add it to X.

Remove v from P and add it to X.

proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: \quad BronKerboschPivot $(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for
proc BronKerboschPivot (P, R, X)
1: if $P \cup X=\emptyset$ then
2: report R as a maximal clique
3: end if
4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
5: for each vertex $v \in P \backslash \Gamma(u)$ do
6: $\quad \operatorname{BronKerboschPivot}(P \cap \Gamma(v), R \cup\{v\}, X \cap \Gamma(v))$
7: $\quad P \leftarrow P \backslash\{v\}$
8: $\quad X \leftarrow X \cup\{v\}$
9: end for

$$
O\left(|P|^{2}(|X|+|P|)\right)
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
D(p, x) \leq \max _{k}\{k D(p-k, x)\}+O\left(p^{2}(p+x)\right)
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
D(p, x) & \leq \max _{k}\{k D(p-k, x)\}+O\left(p^{2}(p+x)\right) \\
& \leq(d+x)\left[\max _{k}\left\{\frac{k D(p-k, x)}{d+x}\right\}+O\left(p^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
D(p, x) & \leq \max _{k}\{k D(p-k, x)\}+O\left(p^{2}(p+x)\right) \\
& \leq(d+x)\left[\max _{k}\left\{\frac{k D(p-k, x)}{d+x}\right\}+O\left(p^{2}\right)\right] \\
& \leq(d+x)\left[\max _{k}\{k T(p-k)\}+O\left(p^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
D(p, x) & \leq \max _{k}\{k D(p-k, x)\}+O\left(p^{2}(p+x)\right) \\
& \leq(d+x)\left[\max _{k}\left\{\frac{k D(p-k, x)}{d+x}\right\}+O\left(p^{2}\right)\right] \\
& \leq(d+x)\left[\max _{k}\{k T(p-k)\}+O\left(p^{2}\right)\right] \\
& =O\left((d+x) 3^{p / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
T(n) & \leq \max _{k}\{k T(n-k)\}+O\left(n^{2}\right) \\
& =O\left(3^{n / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
D(p, x) & \leq \max _{k}\{k D(p-k, x)\}+O\left(p^{2}(p+x)\right) \\
& \leq(d+x)\left[\max _{k}\left\{\frac{k D(p-k, x)}{d+x}\right\}+O\left(p^{2}\right)\right] \\
& \leq(d+x)\left[\max _{k}\{k T(p-k)\}+O\left(p^{2}\right)\right] \\
& =O\left((d+x) 3^{p / 3}\right) \\
& =O\left((d+x) 3^{d / 3}\right)
\end{aligned}
$$

$$
\left.\sum_{v \in V} O\left(d+\left|X_{v}\right|\right) 3^{d / 3}\right)
$$

$$
\begin{aligned}
& \left.\sum_{v \in V} O\left(d+\left|X_{v}\right|\right) 3^{d / 3}\right) \\
& =O\left((d n+m) 3^{d / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{v \in V} O\left(d+\left|X_{v}\right|\right) 3^{d / 3}\right) \\
& =O\left((d n+m) 3^{d / 3}\right) \\
& =O\left(d n 3^{d / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{v \in V} O\left(d+\left|X_{v}\right|\right) 3^{d / 3}\right) \\
& =O\left((d n+m) 3^{d / 3}\right) \\
& =O\left(d n 3^{d / 3}\right) \\
& =O(f(d) n) \quad \text { where } f(d)=d 3^{d / 3}
\end{aligned}
$$

Our running time: $O\left(d n 3^{d / 3}\right)$

Our running time: $O\left(d n 3^{d / 3}\right)$

Worst-case output size: $O\left(d(n-d) 3^{d / 3}\right)$

Our running time: $O\left(d n 3^{d / 3}\right)$

Worst-case output size: $O\left(d(n-d) 3^{d / 3}\right)$

When $n-d=\Omega(n)$, our algorithm is worst-case optimal.

An upper bound

$\leq d$ later neighbors.

An upper bound

$\leq d$ later neighbors.

An upper bound

$\leq d$ later neighbors.

An upper bound

$\leq d$ later neighbors.

at most $O\left(3^{d / 3}\right)$ maximal cliques

An upper bound

$\leq d$ later neighbors.

at most $O\left(3^{d / 3}\right)$ maximal cliques

An upper bound

$n-d-3$ vertices $\quad d+3$ vertices

An upper bound

$$
\begin{array}{cc}
(n-d-3) 3^{d / 3} & 3^{\frac{d+3}{3}} \\
n-d-3 \text { vertices } & d+3 \text { vertices }
\end{array}
$$

An upper bound

$n-d-3$ vertices
$d+3$ vertices

A lower bound

$$
K_{n-d, 3,3,3, \ldots}
$$

A lower bound

$$
K_{n-d, 3,3,3, \ldots}
$$

(d)

A lower bound

$$
K_{n-d, 3,3,3, \ldots}
$$

A lower bound

$$
K_{n-d, 3,3,3, \ldots}
$$

$$
\begin{aligned}
& (n-d) 3^{d / 3} \\
& \text { maximal cliques }
\end{aligned}
$$

A lower bound

$$
K_{n-d, 3,3,3, \ldots}
$$

$(n-d) 3^{d / 3}$ maximal cliques
has degeneracy d when $(n-d) \geq 3$

at most $(n-d) 3^{d / 3}$ maximal cliques
each clique is of size at most $d+1$
$O\left(d(n-d) 3^{d / 3}\right)$ worst-case output size.

The Bron-Kerbosch Algorithm

```
proc BronKerbosch( }P,R,X
    1: if }P\cupX=\emptyset\mathrm{ then
    2: report }R\mathrm{ as a maximal clique
    3: end if
    4: for each vertex v\inP do
    5: BronKerbosch(P\cap\Gamma(v),R\cup{v},X\cap\Gamma(v))
    6: }P\leftarrowP\{v
    7: }X\leftarrowX\cup{v
    8: end for
```


The Bron-Kerbosch Algorithm

```
proc BronKerbosch( }P,R,X
    1: if }P\cupX=\emptyset\mathrm{ then
    2: report }R\mathrm{ as a maximal clique
3: end if
4: for each vertex v\inP (in degeneracy order) do
5: BronKerbosch(P\cap\Gamma(v),R\cup{v},X\cap\Gamma(v))
6: }P\leftarrowP\{v
7: }X\leftarrowX\cup{v
8: end for
```


The Bron-Kerbosch Algorithm

```
proc BronKerbosch( }P,R,X
    1: if }P\cupX=\emptyset\mathrm{ then
    2: report }R\mathrm{ as a maximal clique
3: end if
4: for each vertex v\inP (in degeneracy order) do
5: BronKerboschPivot(P\cap\Gamma(v),R\cup{v},X\cap\Gamma(v))
6: }P\leftarrowP\{v
7: }X\leftarrowX\cup{v
8: end for
```


Thank you!

