
Near-optimal Fixed-parameter Tractability
of the Bron–Kerbosch Algorithm

for Maximal Cliques

Darren Strash

Joint work with David Eppstein and Maarten Löffler

Department of Computer Science
UC Irvine

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

Maximal
Maximal,
Maximum Not Maximal Not Clique

Goal: Design an algorithm to list all maximal cliques

Goal: Design an algorithm to list all maximal cliques

Motivation

Motivation

Features in ERGM

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Document clustering for information retrieval

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

3 ∗ 3 ∗ 3 ∗ 3

There may be many maximal cliques.

3n/3 maximal cliques

There may be many maximal cliques.

3n/3 maximal cliques

(Moon–Moser bound)

Maximal Clique Listing Algorithms

Author Year Running Time
Bron and Kerbosch 1973 ???

Tsukiyama et al. 1977 O(nmµ)
Chiba and Nishizeki 1985 O(αmµ)

Makino and Uno 2004 O(∆4µ)

n = number of vertices
m = number of edges
µ = number of maximal cliques

∆ = maximum degree of the graph
α = arboricity

Tomita et al. (2006)

Tomita et al. (2006)

Worst-case optimal running time O(3n/3)

Tomita et al. (2006)

Worst-case optimal running time O(3n/3)

Computational experiments:

The Bron–Kerbosch Algorithm

Its variations work well in practice.

Easy to implement

Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)

There are many heuristics, which make it faster

Easy to understand

One variation is worst-case optimal (O(3n/3) time)
Tomita et al. (2006)

The Bron–Kerbosch Algorithm

Its variations work well in practice.

Easy to implement

Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)

There are many heuristics, which make it faster

Easy to understand

One variation is worst-case optimal (O(3n/3) time)
Tomita et al. (2006)

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to minimize |P \ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

T (n) ≤ max
k
{kT (n− k)}+O(n2)

The Bron–Kerbosch Algorithm with Pivoting

T (n) ≤ max
k
{kT (n− k)}+O(n2)

T (n) = O(3n/3)

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

All cliques in planar graphs may be listed in time O(n)
Chiba and Nishizeki (1985), Chrobak and Eppstein (1991)

The Bron–Kerbosch Algorithm

Want to characterize the running time with a parameter.

Let p be our parameter of choice.

An algorithm is fixed-parameter tractable with
parameter p if it has running time

f(p)nO(1)

The key is to avoid things like np.

Parameterize on Sparsity

Parameterize on Sparsity

degeneracy:

Parameterize on Sparsity

degeneracy:

The minimum integer d such that every subgraph of
G has a vertex of degree d or less.

Degeneracy

Degeneracy

d = 1

degeneracy:

The minimum integer d such that there is an
ordering of the vertices where each vertex has at
most d neighbors later in the ordering.

Degeneracy

h

h

h

d = 1

Planar graphs have degeneracy at most 5

Degeneracy is easy to compute

d-degenerate graphs...

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

> d later neighbors.

d-degenerate graphs...

d-degenerate graphs...

have fewer than dn edges.

d-degenerate graphs...

have fewer than dn edges.

≤ d later neighbors.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other
popular sparsity measures.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other
popular sparsity measures.

Graphs generated by the preferential attachment
mechanism of Barabási and Albert have low
degeneracy.

proc BronKerboschDegeneracy(V , E)

1: for each vertex vi in a degeneracy ordering v0, v1, v2, . . . of (V,E)
do

2: P ← Γ(vi) ∩ {vi+1, . . . , vn−1}
3: X ← Γ(vi) ∩ {v0, . . . , vi−1}
4: BronKerboschPivot(P , {vi}, X)
5: end for

|P |≤ dX

Computing the pivot

X P

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

X P

Computing the pivot

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

X P

O(|P |(|X|+ |P |))

Computing the pivot

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

X P

Find subgraph induced by v’s neighbors.

X P
v

Find subgraph induced by v’s neighbors.

X P
v

Find subgraph induced by v’s neighbors.

X ∩ Γ(v) P ∩Γ(v)

Find subgraph induced by v’s neighbors.

X ∩ Γ(v) P ∩Γ(v)

O(|P |(|X|+ |P |))

Find subgraph induced by v’s neighbors.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

X P
v

Remove v from P and add it to X.

X P
v

Remove v from P and add it to X.

X P

v

Remove v from P and add it to X.

X P

v
O(|P |(|X|+ |P |))

Remove v from P and add it to X.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

O(|P |2(|X|+ |P |))

T (n) ≤ max
k
{kT (n− k)}+O(n2)

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]
= O((d+ x)3p/3)

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]
= O((d+ x)3p/3)

= O(3n/3)

= O((d+ x)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

= O(dn3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

= O(dn3d/3)

where f(d) = d3d/3= O(f(d)n)

Our running time: O(dn3d/3)

Our running time: O(dn3d/3)

Worst-case output size: O(d(n− d)3d/3)

Our running time: O(dn3d/3)

Worst-case output size: O(d(n− d)3d/3)

When n− d = Ω(n), our algorithm is worst-case optimal.

≤ d later neighbors.

An upper bound

≤ d later neighbors.

An upper bound

≤ d later neighbors.

An upper bound

≤ d later neighbors.

at most O(3d/3) maximal cliques

An upper bound

≤ d later neighbors.

at most O(3d/3) maximal cliques

An upper bound

n− d− 3 vertices d+ 3 vertices

An upper bound

n− d− 3 vertices d+ 3 vertices

(n− d− 3)3d/3 3
d+3
3

An upper bound

n− d− 3 vertices d+ 3 vertices

(n− d− 3)3d/3 3
d+3
3

at most (n− d)3d/3 maximal cliques

An upper bound

Kn−d,3,3,3,...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

(n− d)3d/3

maximal cliques

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

(n− d)3d/3

maximal cliques

has degeneracy d
when (n− d) ≥ 3

A lower bound

at most (n− d)3d/3 maximal cliques

each clique is of size at most d+ 1

O(d(n− d)3d/3) worst-case output size.

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P (in degeneracy order) do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P (in degeneracy order) do
5: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

Thank you!

