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Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Document clustering for information retrieval
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3n/3 maximal cliques

(Moon–Moser bound)



Maximal Clique Listing Algorithms

Author Year Running Time
Bron and Kerbosch 1973 ???

Tsukiyama et al. 1977 O(nmµ)
Chiba and Nishizeki 1985 O(αmµ)

Makino and Uno 2004 O(∆4µ)

n = number of vertices
m = number of edges
µ = number of maximal cliques

∆ = maximum degree of the graph
α = arboricity
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Worst-case optimal running time O(3n/3)
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Computational experiments:



The Bron–Kerbosch Algorithm

Its variations work well in practice.

Easy to implement

Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)

There are many heuristics, which make it faster

Easy to understand

One variation is worst-case optimal (O(3n/3) time)
Tomita et al. (2006)
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The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for
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The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for
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T (n) ≤ max
k
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T (n) ≤ max
k
{kT (n− k)}+O(n2)

T (n) = O(3n/3)
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The Bron–Kerbosch Algorithm

All cliques in planar graphs may be listed in time O(n)
Chiba and Nishizeki (1985), Chrobak and Eppstein (1991)



The Bron–Kerbosch Algorithm

Want to characterize the running time with a parameter.

Let p be our parameter of choice.

An algorithm is fixed-parameter tractable with
parameter p if it has running time

f(p)nO(1)

The key is to avoid things like np.
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Parameterize on Sparsity

degeneracy:

The minimum integer d such that every subgraph of
G has a vertex of degree d or less.
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degeneracy:

The minimum integer d such that there is an
ordering of the vertices where each vertex has at
most d neighbors later in the ordering.

Degeneracy
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d = 1





Planar graphs have degeneracy at most 5



Degeneracy is easy to compute
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≤ d later neighbors.
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Degeneracy is within a constant factor of other
popular sparsity measures.

Graphs generated by the preferential attachment
mechanism of Barabási and Albert have low
degeneracy.



















proc BronKerboschDegeneracy(V , E)

1: for each vertex vi in a degeneracy ordering v0, v1, v2, . . . of (V,E)
do

2: P ← Γ(vi) ∩ {vi+1, . . . , vn−1}
3: X ← Γ(vi) ∩ {v0, . . . , vi−1}
4: BronKerboschPivot(P , {vi}, X)
5: end for



|P |≤ dX



Computing the pivot

X P

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.
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Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.



X P

O(|P |(|X|+ |P |))

Computing the pivot

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.
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Find subgraph induced by v’s neighbors.
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Remove v from P and add it to X.
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Our running time: O(dn3d/3)

Worst-case output size: O(d(n− d)3d/3)

When n− d = Ω(n), our algorithm is worst-case optimal.
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maximal cliques

has degeneracy d
when (n− d) ≥ 3

A lower bound



at most (n− d)3d/3 maximal cliques

each clique is of size at most d+ 1

O(d(n− d)3d/3) worst-case output size.
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Thank you!


