Near-optimal Fixed-parameter Tractability of the Bron–Kerbosch Algorithm for Maximal Cliques

Darren Strash

Department of Computer Science UC Irvine

Joint work with David Eppstein and Maarten Löffler

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

What is a Maximal Clique?

A clique that cannot be made bigger by adding more vertices

Goal: Design an algorithm to list all maximal cliques

Goal: Design an algorithm to list all maximal cliques

Features in ERGM

Features in ERGM

Detect structural motifs from similarities between proteins

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Document clustering for information retrieval

(Moon–Moser bound)

Maximal Clique Listing Algorithms

Author	Year	Running Time
Bron and Kerbosch	1973	???
Tsukiyama et al.	1977	$O(nm\mu)$
Chiba and Nishizeki	1985	$O(lpha m \mu)$
Makino and Uno	2004	$O(\Delta^4 \mu)$

 $\begin{array}{l} n = {\rm number \ of \ vertices} \\ m = {\rm number \ of \ edges} \\ \mu = {\rm number \ of \ maximal \ cliques} \\ \alpha = {\rm arboricity} \\ \Delta = {\rm maximum \ degree \ of \ the \ graph} \end{array}$

Tomita et al. (2006)

Tomita et al. (2006)

Worst-case optimal running time $O(3^{n/3})$

Tomita et al. (2006)

Worst-case optimal running time $O(3^{n/3})$

Computational experiments:

AMC	AMC*	CLIQUES
[14]	[14]	
 261.27	9.51	10.49
952.25	49.45	10.20
3,601.09	130.76	9.90
14,448.21	431.20	10.95
35,866.69	530.53	12.97
> 24 h	1,066.62	16.85
> 24 h	4,350.94	33.75
> 24 h	15,655.05	65.06
> 24 h	> 24 h	293.97

Easy to understand

Easy to implement

There are many heuristics, which make it faster

Its variations work well in practice.

Confirmed through computational experiments Johnston (1976), Koch (2001), Baum (2003)

One variation is worst-case optimal $(O(3^{n/3}) \text{ time})$ Tomita et al. (2006)

Easy to understand

Easy to implement

There are many heuristics, which make it faster

Its variations work well in practice.

Confirmed through computational experiments Johnston (1976), Koch (2001), Baum (2003)

One variation is worst-case optimal $(O(3^{n/3}) \text{ time})$ Tomita et al. (2006)

proc BronKerbosch(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: for each vertex $v \in P$ do
- 5: BronKerbosch $(P \cap \Gamma(v), \mathbb{R} \cup \{v\}, X \cap \Gamma(v))$
- 6: $P \leftarrow P \setminus \{v\}$
- 7: $X \leftarrow X \cup \{v\}$
- 8: end for

The Bron–Kerbosch Algorithm with Pivoting **proc** BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique

3: **end if**

- 4: choose a pivot $u \in P \cup X$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

The Bron–Kerbosch Algorithm with Pivoting **proc** BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to minimize $|P \setminus \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

The Bron–Kerbosch Algorithm with Pivoting **proc** BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

The Bron–Kerbosch Algorithm with Pivoting

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$

The Bron–Kerbosch Algorithm with Pivoting

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$

$$T(n) = O(3^{n/3})$$

All cliques in planar graphs may be listed in time O(n)Chiba and Nishizeki (1985), Chrobak and Eppstein (1991)

Want to characterize the running time with a parameter.

Let p be our parameter of choice.

An algorithm is *fixed-parameter tractable* with parameter p if it has running time

 $f(p)n^{O(1)}$

The key is to avoid things like n^p .

Parameterize on Sparsity

Parameterize on Sparsity

degeneracy:

Parameterize on Sparsity

degeneracy:

The minimum integer d such that every subgraph of G has a vertex of degree d or less.

Degeneracy

degeneracy:

The minimum integer d such that there is an ordering of the vertices where each vertex has at most d neighbors later in the ordering.

d = 1

Planar graphs have degeneracy at most 5

Degeneracy is easy to compute

cannot contain cliques with more than d+1 vertices

cannot contain cliques with more than d + 1 vertices

cannot contain cliques with more than d + 1 vertices

cannot contain cliques with more than d + 1 vertices

have fewer than dn edges.

have fewer than dn edges.

 $\leq d$ later neighbors.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other popular sparsity measures.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other popular sparsity measures.

Graphs generated by the preferential attachment mechanism of Barabási and Albert have low degeneracy.

proc BronKerboschDegeneracy(V, E)

- 1: for each vertex v_i in a degeneracy ordering v_0 , v_1 , v_2 , ... of (V, E)do
- 2: $P \leftarrow \Gamma(v_i) \cap \{v_{i+1}, \dots, v_{n-1}\}$
- 3: $X \leftarrow \Gamma(v_i) \cap \{v_0, \dots, v_{i-1}\}$
- 4: BronKerboschPivot(P, $\{v_i\}$, X)
- 5: end for

Computing the pivot Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

Computing the pivot Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

Computing the pivot Pick $u \in X \cup P$ that maximizes $|P \cap \Gamma(u)|$.

O(|P|(|X|+|P|))

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

O(|P|(|X|+|P|))

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- $\textbf{7:} \quad P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$
- 9: end for

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

proc BronKerboschPivot(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: choose a pivot $u \in P \cup X$ to maximize $|P \cap \Gamma(u)|$
- 5: for each vertex $v \in P \setminus \Gamma(u)$ do
- 6: BronKerboschPivot $(P \cap \Gamma(v), R \cup \{v\}, X \cap \Gamma(v))$
- 7: $P \leftarrow P \setminus \{v\}$
- 8: $X \leftarrow X \cup \{v\}$

9: end for

$O(|P|^2(|X| + |P|))$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$

= $O(3^{n/3})$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$

= $O(3^{n/3})$

$$D(p,x) \le \max_{k} \{kD(p-k,x)\} + O(p^{2}(p+x))$$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$

= $O(3^{n/3})$

$$D(p,x) \le \max_{k} \{kD(p-k,x)\} + O(p^{2}(p+x))$$
$$\le (d+x) \left[\max_{k} \left\{\frac{kD(p-k,x)}{d+x}\right\} + O(p^{2})\right]$$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$
$$= O(3^{n/3})$$

$$D(p,x) \le \max_{k} \{kD(p-k,x)\} + O(p^{2}(p+x))$$
$$\le (d+x) \left[\max_{k} \left\{ \frac{kD(p-k,x)}{d+x} \right\} + O(p^{2}) \right]$$
$$\le (d+x) \left[\max_{k} \{kT(p-k)\} + O(p^{2}) \right]$$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$
$$= O(3^{n/3})$$

$$D(p,x) \le \max_{k} \{ kD(p-k,x) \} + O(p^{2}(p+x))$$

$$\le (d+x) \left[\max_{k} \left\{ \frac{kD(p-k,x)}{d+x} \right\} + O(p^{2}) \right]$$

$$\le (d+x) \left[\max_{k} \{ kT(p-k) \} + O(p^{2}) \right]$$

$$= O((d+x)3^{p/3})$$

$$T(n) \le \max_{k} \{kT(n-k)\} + O(n^2)$$
$$= O(3^{n/3})$$

$$D(p,x) \le \max_{k} \{kD(p-k,x)\} + O(p^{2}(p+x)) \\ \le (d+x) \left[\max_{k} \left\{ \frac{kD(p-k,x)}{d+x} \right\} + O(p^{2}) \right] \\ \le (d+x) \left[\max_{k} \{kT(p-k)\} + O(p^{2}) \right] \\ = O((d+x)3^{p/3}) \\ = O((d+x)3^{d/3})$$

 $\sum O(d + |X_v|) 3^{d/3})$ $v {\in} V$

$$\sum_{v \in V} O(d + |X_v|) 3^{d/3})$$

$$= O((dn+m)3^{d/3})$$

$$\sum_{v \in V} O(d + |X_v|) 3^{d/3})$$

$$= O((dn+m)3^{d/3})$$

$$= O(dn3^{d/3})$$

$$\sum_{v \in V} O(d + |X_v|) 3^{d/3})$$

$$= O((dn+m)3^{d/3})$$

$$= O(dn3^{d/3})$$

 $= O(f(d)n)$ where $f(d) = d3^{d/3}$

Our running time: $O(dn3^{d/3})$

Our running time: $O(dn3^{d/3})$

Worst-case output size: $O(d(n-d)3^{d/3})$

Our running time: $O(dn3^{d/3})$

Worst-case output size: $O(d(n-d)3^{d/3})$

When $n - d = \Omega(n)$, our algorithm is worst-case optimal.

$\leq d$ later neighbors.

$\leq d$ later neighbors.

at most $O(3^{d/3})$ maximal cliques

at most $O(3^{d/3})$ maximal cliques

 $K_{n-d,3,3,3,...}$

 $K_{n-d,3,3,3,...}$

 $K_{n-d,3,3,3,...}$

 $K_{n-d,3,3,3,...}$

 $(n-d)3^{d/3}$ maximal cliques

 $K_{n-d,3,3,3,...}$

 $(n-d)3^{d/3}$ maximal cliques

has degeneracy dwhen $(n-d) \ge 3$ at most $(n-d)3^{d/3}$ maximal cliques

each clique is of size at most d + 1

 $O(d(n-d)3^{d/3})$ worst-case output size.

The Bron–Kerbosch Algorithm

proc BronKerbosch(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: for each vertex $v \in P$ do
- 5: BronKerbosch $(P \cap \Gamma(v), \mathbb{R} \cup \{v\}, X \cap \Gamma(v))$
- 6: $P \leftarrow P \setminus \{v\}$
- 7: $X \leftarrow X \cup \{v\}$
- 8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: for each vertex $v \in P$ (in degeneracy order) do
- 5: BronKerbosch $(P \cap \Gamma(v), \mathbb{R} \cup \{v\}, X \cap \Gamma(v))$
- $\textbf{6:} \quad P \leftarrow P \setminus \{v\}$
- 7: $X \leftarrow X \cup \{v\}$
- 8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P, R, X)

- 1: if $P \cup X = \emptyset$ then
- 2: report R as a maximal clique
- 3: **end if**
- 4: for each vertex $v \in P$ (in degeneracy order) do
- 5: BronKerboschPivot $(P \cap \Gamma(v), \mathbb{R} \cup \{v\}, X \cap \Gamma(v))$
- $\mathbf{6}: \quad P \leftarrow P \setminus \{v\}$
- 7: $X \leftarrow X \cup \{v\}$
- 8: end for

Thank you!