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Abstract
Network dynamics may be viewed as a process of change
in the edge structure of a network, in the vertex set on
which edges are defined, or in both simultaneously. While
early studies of such processes were primarily descriptive
(e.g., Sampson, 1968), work on this topic in recent years
has increasingly turned to formal statistical models (e.g.,
Snijders, 2001). While showing great promise, many of
these modern dynamic models are computationally
intensive and scale very poorly in the size of the network
under study, making them difficult or impossible to apply to
large networks in practical settings. Given this situation,
there is a need for scalable approaches that – even if
limited in various ways – can serve as a starting point for
analysis of intertemporal network data at large scales.
This paper explores the use of the well-known logistic
network regression framework as a simple basis for the
modeling of network dynamics with various orders of
temporal dependence.

Dynamic Logistic Model

[ERGM] P (G = g | s, θ) = exp
θTs(g)


∑
g′∈G exp (θTs(g′))

IG(g),
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Figure 1: Representation of the dependence graph of the cross-sectional vertex and edge
sets under the assumptions of Section 3.2. t represents time and k represents the number
of lags.

allow one to leverage the substantial computational and interpretive advan-
tages of the General Linear Model (GLM) framework, while still capturing
the critical mechanisms of network evolution.

The model family we are proposing is one that corresponds to a sin-
gle (large) lagged logistic regression. Simulation from this model requires
that we invoke a dependence structure such that Et+1 depends on Vt+1 and
(Et, Vt), . . . , (Et−k, Vt−k), and Vt+1 depends only on (Et, Vt), . . . , (Et−k, Vt−k)
(see Figure 1). Intuitively, this can be thought of as specifying that today’s
vertices are determined by the past network structure (out to some limit,
k), and that today’s edges are determined by both this past structure and
today’s vertices. One of the effects of this framework is that it allows uncer-
tainty in network composition to be considered when making predictions. As
we shall see, explicitly considering this aspect of network structure (which
has been largely overlooked in prior research) leads to a very different view
of network dynamics in contexts for which vertex entry and exit are possible.

Although the aforementioned model family treats edges as conditionally
independent within time steps, they may depend upon past time steps via
arbitrary functions of previous graph realizations (up to some finite order,
k). We call such functions of previous network states lag terms (in analogy
with time series models), with the order of a lag term corresponding to
the temporal difference between the earliest cross-section employed by the
term and the current cross-section. (Thus, a first order term involves only
the previous time step, the second involves at most the second, etc.) In
general, our framework allows for arbitrary choice of k (and thus dependence
over arbitrarily long lags). In practice, estimable lag terms will be largely
constrained by the number of time points available in the data-set. For
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Conversations between windsurfers from August
to September 1986 (Freeman et al., 1988).

Contextual Effects: Org Collaboration Katrina
Data and Context: Butts et al. (2010)

HQ City
Storm Track

 
 Organizational Collaboration Durning the Katrina Disaster 

 Combined Network Plotted by HQ Location

Model
Vertex Parameter Estimates

Model 5
BIC 31810.0173

Intercept -4.5078*
(0.0205)

Yt−1 2.268*
(0.0356)

log(nt−1) 0.4273*
(0.0035)

Degree 0.1989*
(0.0309)

HQ State -0.2274*
(0.0206)

HQ City 0.3044*
(0.0221)

FEMA Region 2.0954*
(0.0206)

Type 0.4519*
(0.0206)

Scale -0.3264*
(0.0206)

Sum of Lineaget−1 -0.2943*
(0.003)

Storm-track log Distt−1 0.0046*
(0.001)

Edge Parameter Estimates
Model 5

BIC 31810.0173
Density -4.3685*

(0.0293)
Yt−1 5.8815*

(0.0639)
log(nt−1) -0.5323*

(0.0049)
Two-path -0.1214*

(0.0297)
Mean Degree 0.1877*

(0.0061)
HQ State 1.2508*

(0.04)
HQ City -0.3382*

(0.055)
FEMA Region -0.3715*

(0.037)
Type 0.6179*

(0.0335)
Scale 0.0735

(0.0436)
Lineage 1.9084*

(0.1021)
Log Dist HQ city -0.1539*

(0.0056)
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Logistic Choice
Data: Butts and Cross
(2009)

Aggregate Network
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• utility function, u
•Aij,t = 0 or Aij,t = 1, the odds that i will choose
Aij,t = 1 are strictly increasing in
ui(A|Aij,t = 1)/ui(A|Aij,t = 0)

• stochastic choice process
• We employ a logistic choice model

Pr(Aij,t = 1) = exp [ui (A|Aij,t = 1)]
exp [ui (A|Aij,t = 1)] + exp [ui (A|Aij,t = 0)]

,

or, equivalently, that

logit(Aij,t) = ln Pr(Aij,t = 1)
Pr(Aij,t = 0)

= ui (A|Aij,t = 1)− ui (A|Aij,t = 0)

Model
Assumptions
At its crudest level, a blog is
a web page with dynamically
updated links to other online
resources.
1 The state of outgoing

edges at each observation
of the blog network is
assumed to result from the
choices of the sending
blog;

2 Each blog in the network
may send an edge to any
number of other blogs in
the network at any time;

3 The decision of a given
blog regarding the state of
a given edge is made
myopically, and in isolation;

4 The decision of a given
blog regarding the state of
a given edge may depend
upon the past history of the
blog network, or of the
current external context.

Parameters
• Includes an effect for
clique counts from
Eppstein et al. (2010).

N-Step Prediction of Katrina
Time 13 Time 14 Time 15

Time 16 Time 17 Time 18

Conclusions
1 Successfully applied Dynamic Logistic

Regression to:
• Interpersonal Collaboration (Conversations on
a Beach)

• Online Interaction (Blog Networks)
• Organizational Collaboration (Katrina Disaster
2005)

2 Modeled both the Vertex and Edge
Dynamics

3 Scalable Model through Simplified
Assumptions

4 Behavioral and Utility Interpretations
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