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Abstract

Network dynamics may be viewed as a process of change
In the edge structure of a network, in the vertex set on
which edges are defined, or in both simultaneously. While
early studies of such processes were primarily descriptive
(e.g., Sampson, 1968), work on this topic in recent years
has increasingly turned to formal statistical models (e.g.,
Snijders, 2001). While showing great promise, many of
these modern dynamic models are computationally
iIntensive and scale very poorly in the size of the network
under study, making them difficult or impossible to apply to
large networks in practical settings. Given this situation,
there is a need for scalable approaches that — even if
limited In various ways — can serve as a starting point for
analysis of intertemporal network data at large scales.
This paper explores the use of the well-known logistic
network regression framework as a simple basis for the
modeling of network dynamics with various orders of
temporal dependence.
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Conversations between windsurfers from August
to September 1986 (Freeman et al., 1988).
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Logistic Choice Model
Data: Butts and Cross ASSump“OnS
(2009) At its crudest level, a blog is

a web page with dynamically
updated links to other online
resources.

© The state of outgoing
edges at each observation

of the blog network is

assumed to result from the
choices of the sending

blog;

® Each blog in the network

may send an edge to

number of other blogs in
the network at any time;

® The decision of a given
blog regarding the state of
a given edge is made
myopically, and in isolation;
O The decision of a given
blog regarding the state of
a given edge may depend

upon the past history

blog network, or of the
current external context.
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Conclusions
©@ Successfully applied Dynamic Logistic
Regression to:
- Interpersonal Collaboration (Conversations on
a Beach)
- Online Interaction (Blog Networks)

- Organizational Collaboration (Katrina Disaster
2005)
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Parameters
- Includes an effect for

clique counts from
Eppstein et al. (2010).

Dynamics

® Scalable Model through Simplified
Assumptions

o Behavioral and Utility Interpretations
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- utility function, u

»A;j = 0or A = 1, the odds that ¢ will choose
A;;+ = 1 are strictly increasing in
wi(AlAije = 1) /ui(Al A, = 0)

- Stochastic choice process

- We employ a logistic choice model
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