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Motivation

•Network data often constructed from sequences of relational events
(e.g. human communication data)

Goal: Predict the probability the next event involves sender s, recipi-
ent r , and action type a.

Latent Variable Modeling of Social Networks
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•We propose the Marginal Product Mixture Model which
instead considers latent classes of events.

• Block models instead assume a partition of the individuals and a
model for group-wise interactions.

•The MPMM addresses the sparsity issue of direct probability
estimation by using the marginal activity for the sender, for example.

• Generative Model: For each event

•Pick latent class
•Pick sender
•Pick receiver
•Pick action type

c ∼ Categorical(π)
s|c ∼ Categorical(θc)
r |c ∼ Categorical(φc)
a|c ∼ Categorical(ψc)

• Inference: Collapsed Gibbs Sampling (CGS) algorithm iteratively
samples a latent class assignment for each observation and continues
until convergence. Inner loop is simple and minimal bookkeeping is
required.

Exploratory Data Analysis
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Figure: Left: Counts of email interactions among individuals in the Eckmann data
set. Right: MPMM fit to data using C = 10. Each event is colored according to its
assigned latent class. Rows and columns are rearranged according to which latent
class an individual is assigned to most.

Class A
Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Government agents 0.47 Greece : NA 0.05 Sports contest 0.59
U.S. : Athletes 0.29 Australia : Government agents 0.02 Agree or accept 0.14
U.S. : Nominal agents 0.04 United Kingdom : NA 0.02 Optimistic comment 0.04
U.S. : Police 0.04 Canada : Government agents 0.02 Comment 0.03
U.S. : Occupations 0.04 France : NA 0.01 Control crowds 0.03
U.S. : Ethnic agents 0.03 Belgium : Government agents 0.01 Improve relations 0.01

Class B
Top Senders Pr. Top Receivers Pr. Top Actions Pr.
U.S. : Military 0.88 Iraq : Government agents 0.17 Comment 0.19
U.S. : Government agents 0.08 Iraq : National executive 0.07 Military raid 0.14
U.S. : Military hardware 0.01 Iraq : Military 0.05 Military clash 0.10
U.S. : Officials 0.00 Iraq : Ethnic agents 0.05 Military occupation 0.10
U.S. : Police 0.00 Iraq : Intangible things 0.04 Shooting 0.10
U.S. : Motor vehicles 0.00 NA : Insurgents 0.04 Political arrests and detentions 0.04
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Figure: Exploratory analysis after fitting MPMM with C = 50 to a dataset of
international political events. Top: Excerpts from distributions of senders, receivers,
and action types for each latent class. Bottom: Number of events per week assigned
to these three latent classes.

Experimental Results

University Email [1]
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International Political Events [2]

Size of Training Set

Te
st

 L
og

 P
ro

ba
bi

lit
y

−17

−16

−15

−14

−13

−12

−11

●

●

●

●

●
●

102 102.5 103 103.5 104 104.5

Method

● MPMM−MCGS: C=3

MPMM−MCGS: C=20

MPMM−MCGS: C=50

Multinomial

Uniform

Number of observations

Te
st

 L
og

 P
ro

ba
bi

lit
y

−14.0

−13.5

−13.0

−12.5

−12.0

−11.5

●

●

●

●

●

●

102 102.5 103 103.5 104 104.5

Context

● Complete

Incomplete

Figure: Top: Test log probability as size of the training set and number of latent
classes vary. Baselines include a multinomial-Dirichlet and uniform. Bottom: Effect
of removing recipient information on predictive accuracy.

Summary

•Useful method for relational data
• scalable
• interpretable
• robust to missing data and sparse data
• able to share statistical strength over similar individuals/events

•Extensions
•D-dimensional categorical data; here we used only D = 3.
• Flexible number of latent classes.
• Incorporating Beta random variables is straightforward.
Helpful to obtain each class’s distribution over time.

• HMM at the class level is a simple extension for another type of
time-dependence.

• Smoothing that is more specific to social networks
(e.g. friend-of-a-friend effects).

[1] J.-P. Eckmann, E. Moses, and D. Sergi. Entropy of dialogues creates coherent structures in e-mail traffic.Proceedings
of the National Academy of Sciences of the United States of America, 101(40):14333–7, October 2004.

[2] G. King,W Lowe. An automated information extraction tool for international conflict data with performance
as good as human coders: A rare events evaluation design. International Organization, 57:617-642, 2003.

Supported by: Office of Naval Research award N00014-08-1-1015 and
a National Defense Science and Engineering Graduate Fellowship.


