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Detection of unstable models

Detection of unstable models: exponential families with

Markov dependence (e.g., number of 2-stars, triangles) and
curved exponential families (e.g., GWD, GWDSP, GWESP).

Viable and non-viable models Impact of instability on simulation

Gibbs samplers: sample edges y;; between nodes i and j from full conditional
distributions of the form

Scalable Methods for the

Y.: ly_;; ~Bermoulli(m;;(y_,.: 0
Analysis of Network-Based Data 1) | Y—ij ( 1) <y 1] ))v

where y_;; denotes the collection of edges y excluding y;;, and the log odds
of Wij(y_z'j; 6) 1S given by

i (Y—ij; 0)
1 —mi(y—iji 0)
Metropolis-Hastings algorithms: move from xy to y, generated from prob-
ability mass function f with support {yy : yny ~ x}, with probability

f(SEN\yN)}.

flyn | zn)

= due to the excessive sensitivity of the stationary distribution, convergence
to, and sampling from, unstable distributions may require an extremely
large number of iterations.

Simulation: undirected graphs with n = 32 nodes and N = 496

Simulating large networks and learning the structure of large possible edges. Shaded regions indicate unstable regions.

networks is based on models. Some models of large networks
are viable, others are not (1, 2, 3, 4, 5, 6).

log = A{y—ij,vij = 0}, {y—ij, vij = 1};0).
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2-star parameter

Contributions

oz, yN;0) = min {1, exp[A(zy, yn; 0)]

e Introduce notion of instability of models.

e Discuss characteristics of unstable models.

e Show impact of instability on simulation. EDGES, 2-STARS EDGES, TRIANGLES EDGES, 2-STARS, TRIANGLES

(

e Show impact of instability on learning. = due to the degeneracy of stationary the distribution, multiple starting points

may be required, because algorithms tend to trapped at modes of the prob-
ability mass function pg(y )

e Detect unstable models.

= problematic behavior of simulation algorithms tends to be rooted in the sta-
tionary distribution: some simulation algorithms may outperform others,
but all tend to suffer from the excessive sensitivity and degeneracy of the
stationary distribution.

Instability

Model: discrete exponential family { Py, 8 € ©} with probability
mass function of the form

O_#_J
S]
T T

2-star parameter 2-star parameter triangle parameter

EDGES, GWD EDGES, GWDSP EDGES, GWESP

exp [qp(yn)]
D> ay &P [gp(z )]

po(yn) =

where Impact of instability on learning

e yy: network with N € O(n?) possible edges between n nodes. Simple example: unstable, one-parameter exponential family with natural
parameter 7(f) = 6 and mean-value parameter upy(0) = Eylg(Yy)], e.g.

model with number of 2-stars. Let Ly = miny,[g(yy)] = 0 (without loss) and

® py(y): probability mass of network y ;.

e ¢o(yn) = (), g(yn)): inner product of vector of natural pa- Uy = maxy, [9(yn)].
rameters 7(6) and vector of statistics g(yy). . :
o I(0) = miny,|ge(yn)] = 0 (without loss). Corollary. If a one-parameter exponential family { Py, # € O} is unstable, then, Discussion
f 0 <0,h 11
o Sn(0) = maxy[gp(yn)]- orany ¥ = b however smat e Unstable models: problematic due to excessive sensitivity
PN (0) s 0as N —s 00 and degeneracy and its impact on simulation and learning:
Definition. A discrete exponential family distribution Fy, 0 € ©, Un penalties recommended.
is stable if there exist constants C' > 0 and N > 0 such that and, for any 6 > 0, however small, o Super-stable model: model with bounded log odds
Sy(0) < CNV N > Ng, 1N (0) v 1as N —s oo .0 ANaxpn,yn;0).
and unstable if, for any C' > 0, however large, there exists No > Un e Example 1: Bernoulli model.
0 such that e Example 2: Ising model, exploiting spatial structure to bound
Sy(f)>CNY N > Ng. . log odds.
. . . . . 1 —_
A dlserete exponential f?mﬂ}’ {Fy, 0 € O} 15 S’fable ifall 0 € © ‘ e Example 3: hierarchical degree model, exploiting latent struc-
mapping to () # 0 give rise to stable d1§tr1b1.1t1ons Py, and - ture to bound log odds (work with Duy Quang Vu and
unstable if all ¢ € © mapping to 7(0) # 0 give rise to unstable i} Miruna Petrescu-Prahova, funded by ONR grant N00014-8-
distributions Fj. 1-1015):
n
3 ( ) - CXPp [ 1=1 772(‘9)92(91\7)]
Example: model with number of 2-stars implies Sy(0) = = PO\YN) = S exp[X ni(0)gi(zN)]
3 - = TN i=1"0 ACIY
n(@)| N (n —2) € O(n”) and is therefore unstable. = . . .
< motivated by maximum entropy principle, where
- g1(ynN), - -, gn(yN): degrees of nodes 1, ..., n.
Characteristic [: Sensitivity o -m(@),...,nn(0): degree parameters of nodes 1, ..., n, which
are functions of degree parameters 0q,...,0; of latent
Let polyn) e classes 1,... k.
Ay, yn;0) = log , TN ~ YN ° ] ) | ' —applied to 9/11 communication network and compared to
Po(en) 4 2 O 2 4 competitors, models with number of 2-stars and GWD:
be the log odds of pg(yy) relative to pg(xy), where xy ~ yy 6 p ’ '

means that networks x y and y,y match in all but one edge.
—> mean-value parameter p(0) is close to infininum (all # < 0) or supremum

Theorem 1. If a discrete exponential family distribution Fy, 6 € (all & > 0).
O, is unstable, then there exist no constants C' > 0 and N > 0 —> mean-value parameter ;i () is extremely sensitive to changes of # around
such that 0.

Ay, yn;0)| < CVay~yy VN > Ng.O

—> smallest possible changes, changes of one edge, may result in
extremely large log odds. Vglogpg(yn) = g(yn) — Eglg(Yn)l = g9(yn) — n(0),
where Vg log py(yy): gradient of py(yy) with respect to 6:

Maximum likelihood estimate of 0 is the root of the estimating function

Example: model with number of 2-stars implies |A(xy, yn; )| <

—> finding the root of the estimating function Vg log py(yy) amounts to finding
2[n(0)] (n = 2) € O(n).

the value of 6 such that the expected value of the statistic up(0) = Eglg(Yy)]

matches the observed value of the statistic g(y ). References
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in general, model cannot represent observed networks, be-
cause modes of probability mass function py(y)) do not re-
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