
1. Abstract
Real-world relational data sets, such as social 

networks, often involve measurements over time. We 

propose a Bayesian nonparametric latent feature 

model for such data, where the latent features for each 

actor in the network evolve according to a Markov 

process, extending recent work on similar models for 

static networks. We show how the number of features 

and their trajectories for each actor can be inferred 

simultaneously and demonstrate the utility of this 

model on prediction tasks using synthetic and real-

world data.

2. Introduction
Latent variable models are a common approach to 

modeling social network data.  In this style of model, 

actors are assumed to be represented by vectors of 

latent (i.e. unobserved) variables that, along with any 

observed covariates, determine the network structure.  

By inferring such latent variables from observed 

networks, it is possible to make predictions on unseen 

relationships, and sometimes to obtain a sociological 

explanation for network phenomena.

In this work, we extend the non-parametric latent 

feature relational model of Miller et al. (2009) to 

longitudinal networks, i.e. networks that change over 

time.

4. A Dynamic Relational Infinite

Feature Model (DRIFT)
•A model for longitudinal (time-varying) networks.

•The model assumes the latent features of Miller et al. (2009).

•Actors change their features over time, using the Markov 

dynamics of the infinite Factorial Hidden Markov Model (Van 

Gael et al., 2009).

•In turn, the edge probabilities of the network change over time.

•The number of features can be determined automatically by 

the Bayesian MCMC inference algorithm, and therefore does 

not need to be specified in advance.
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Figure 1. Graphical model for the finite version of DRIFT.  The full 

model is defined to be the limit of this model as the number of 

features K approaches infinity.  This “infinite” construction allows us to 

infer the number of “active” features from the data.

5. Markov Chain Monte Carlo 

Inference Algorithm

•Adaptively determine the number of features using the slice sampling

trick based on the stick-breaking construction of the Indian Buffet 

Process.

•Blocked Gibbs sampling on the other variables.

•Forward-backward dynamic programming on  each actor's feature 

chain.

•Metropolis-Hastings updates for Ws.

Figure 4. Presence and absence of an edge (black

means that an edge is present) (top) and probability of an

edge predicted by DRIFT, for four pairs of actors.

5. Experimental Analysis: Synthetic

Data

Figure 2. Ground truth features (top) and features learned 

by DRIFT (bottom).  Each image represents one feature, 

with rows corresponding to timesteps and columns 

corresponding to actors.

Figure 3.  Predictive density for the next timestep after 

the training data according to DRIFT, LFRM and  a 

simple baseline method, on synthetic data.
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3. Prior Work: the Non-Parametric

Latent Feature Relational Model

(Miller et al., 2009)

•Each actor i is represented by a binary vector of

features Zi

•Intuitively, these features may correspond to

recreational interests, club memberships, social

cliques, employment …

•The number of features K can be learned

automatically due to the non-parametric Indian Buffet

Process prior on Z

•Edge probabilities are conditionally independent

given the features

•Probability of edge between actor i and actor j is

Recovering the latent features on synthetic data.

Figure 5. Predicting one timestep into the future.

Figure 6. Held out graph at time t = 30 (top row) and t=36 (bottom

row), and posterior predictive distributions for each method.

8. Discussion
We have proposed a latent feature model for network data over 

time and showed how to perform Bayesian inference on the 

model using an MCMC algorithm.  Empirical results suggest 

that the proposed dynamic model can outperform static and 

baseline methods on both synthetic and real data.
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7. Quantitative Experimental Results

Predicting the network at the next timestep

Pr(yij =1)=σ(ZiWZj
T)

Weight matrix W

specifies how the 

features interact
Logistic function

Transition probabilities for 

each feature

Networks at each timestep

generated as in the Latent 

Feature Relational Model

Real-valued weight matrix W

specifies how the features 

affect edge probabilities

Hyper-

parameters

There are NxK

Markov chains, 

one for each 

feature, for  each 

actor


