
Retroactive Data Structures
Michael T. Goodrich, Joseph A. Simons

Department of Computer Science, University of California, Irvine

Motivation

We may need to alter the historical sequence of transactions.

•Dynamization. Some static algorithms require a dynamic data
structure to process the input. These algorithms can be made
dynamic by using a retroactive data structure instead.

•Bad Data. Data is either missing, was entered incorrectly, or
comes from a tainted source (e.g. a sensor has malfunctioned).

•Efficient Adaptation.
We may want to undo an error
made early on without redoing all
the work since then.

Goal: Maintain a large amount of data which changes over time such
that we can efficiently update and query the data. Support updates
and queries on current and past versions of the data structure.

Definition

Dynamic data structures only allow us to make changes to the current
state of the data structure.
•A data structure is partially retroactive if it supports updates to
past versions of a data structure in addition to queries and updates
to the current version.

•A data structure is fully retroactive if it also supports queries on
past versions. We will focus on fully retroactive data structures.

Version

1

2

3

Version

1

2

3

Insert into version 1

1b

Persistent
Version

1

2

3

1.1

Retroactive

Figure: All later versions reflect the update in a fully retroactive data structure.

•Unlimited Undo or Backtracking is an inefficient approach.
We want to find more efficient and elegant solutions.

Retroactive Successor Queries

2

3

5

7

11

13

17

19

Value

Time

20

10

t

Successor(6) Successor(6) at time t

Figure: In retroactive successor queries, we can visualize the data points as
horizontal line segments. Queries therefore reduce to dynamic vertical ray shooting.

•m segments implies at
most 2m rays.

•Each ray intersects the
interior of two line
segments.

•Expected number of
rays intersecting
randomly chosen
segment is 4.

Value

Time

20

10

Figure: Trapezoidal Decomposition: Shoot vertical rays (green) from the endpoints
of each line segment (black). This creates a rectangular subdivision.

Interval Trie Level Search Tree

Figure: Stratified Tree. Intervals are stored at the highest level they cut, and at one
node per level on the path to the root of the level search tree.

•Each x interval defines a
set of rectangles.

•Build stratefied tree on y
sides of rectangles.

•Query time: log log2(U )

Figure: Support 2D point location using two layers of stratified tree.

Approximate Range Searching

Always Counted

Never Counted

Counted?

Q−

Q+

ε · d(Q)

• Input: set of points in Rd.
•Updates can insert or delete
points at any time.

•Query: return points in
approximate range at time t.

Figure: Points within Q− must be returned. Points outside Q+ are never returned.
Points between Q− and Q+ may or may not be returned.

Two-layer data structure: Layer for time and layer for space.

Two Ideas:
Time in Outer Layer
•Treat data points as line segments parallel to time axis.
•Build segment tree on line segments
•Augment nodes of segment tree with dynamic approximate range
searching structures, e.g. Quadtreap or Skip-Quadtree.

•Speed up inner queries with fractional cascading techniques.

Space in Outer Layer
•Use a tree with few rotations, e.g. weight-balanced B-tree
•Augment each leaf with update times.
• Internal nodes store union of children’s times.
Key property: parent not present =⇒ children are not present.

Two assumptions to augment with stratefied tree
•Update times are integers (fixed universe, size mk).
•Updates are given in random order.

Cell Query and Expected Update Time: O(log n log log n)

[1] Berg, M. D., Kreveld, M. V., and Snoeyink, J. Two- and three-dimensional point location in rectangular
subdivisions. Journal of Algorithms 18 (1995), 256–277.

[2] Demaine, E. D., Iacono, J., and Langerman, S. Retroactive data structures. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2004), SODA ’04,
Society for Industrial and Applied Mathematics, pp. 281–290.

[3] Eppstein, D., Goodrich, M. T., and Sun, J. Z. The skip quadtree: a simple dynamic data structure for
multidimensional data. In Proceedings of the twenty-first annual symposium on Computational geometry (New
York, NY, USA, 2005), SCG ’05, ACM, pp. 296–305.

[4] Mount, D. M., and Park, E. A dynamic data structure for approximate range searching. In Proceedings of the
2010 annual symposium on Computational geometry (New York, NY, USA, 2010), SoCG ’10, ACM, pp. 247–256.

[5] Seidel, R. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for
triangulating polygons. Comput. Geom. Theory Appl 1 (1991), 51–64.

Supported by: Office of Naval Research award N00014-08-1-1015.


