
Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time
David Eppstein, Maarten Löffler, and Darren Strash

Department of Computer Science, University of California, Irvine

Introduction to the Problem

A clique, or complete subgraph, is an important graph feature in appli-
cation areas ranging from social networks to bioinformatics. Often, it
is important to find not just one large clique, but all maximal cliques.

Maximal Maximal, Not Maximal Not CliqueMaximum

Figure: Maximal cliques are cliques that cannot be extended through the addition of
vertices. We want to list all the maximal cliques of a graph.

vs.

Figure: Listing all maximal cliques on an n-vertex graph must take exponential time
in the worst case because there may be up to 3n/3 cliques to list [2]! However, sparse
graphs have fewer cliques. For example, n-vertex planar graphs have O(n) cliques.

Goal: We desire an algorithm to list all maximal cliques that works
fast on sparse graphs in theory and in practice.

The Bron–Kerbosch Algorithm

The Bron–Kerbosch algorithm [1] is a simple, recursive algorithm that
is easy to implement and works well in practice.

proc BronKerbosch(R, P , X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(R ∪ {v}, P ∩ Γ(v), X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

Figure: The algorithm uses three sets of vertices to generate all maximal cliques: a
partial clique R, candidates for clique expansion P , and vertices which have already
been evaluated and are forbidden X .

backtrack backtrack

Figure: The Bron–Kerbosch algorithm in action.

Pivoting

The branching factor of the Bron–Kerbosch algorithm can be reduced
by choosing a vertex u, called a pivot, and only evaluating candidates
which are non-neighbors of u. Choosing the pivot with the mini-
mum number of candidate non-neighbors gives us a worst-case optimal
O(3n/3)-time algorithm [3].

Figure: The purple pivot vertex has many candidate neighbors.
We delay the evaluation of these neighbors until the purple vertex
is added to the partial clique.

Sparse Graphs

One measure of sparsity is the degeneracy of a graph. The degeneracy
of a graph is the minimum integer d such that every subgraph contains
a vertex with degree at most d . If a graph has degeneracy d , then we
can order the vertices so that each vertex has at most d later neighbors
in the ordering.

C

F

I

D

H

E

A

G

B

CF I DH E A G B

(a) (b)
Figure: (a) A graph with degeneracy 3 , and (b) an ordering showing the graph has
degeneracy at most 3.

Our Algorithm

At the top level, we choose vertex candidates in degeneracy order, and
then execute the Bron–Kerbosch algorithm with pivoting.

|P |≤ dX

Figure: By choosing vertices in the degeneracy order, we ensure that there are few
candidates for clique expansion, limiting the recursion depth.

By choosing vertices in this order, we get a O(d2n3d/3)-time algorithm.
Computing the pivot is the bottleneck of this algorithm, which we can
improve upon by maintaining a subgraph throughout the recursion.

X P

Figure: If we maintain a subgraph consisting of edges that have an end-vertex in the
candidate set, our algorithm has running time O(dn3d/3).

Near-Optimality of Our Algorithm

The worst-case output size is Ω(d(n−d)3d/3). Therefore our algorithm
is worst-case optimal whenever n − d = Ω(n).

≤ d later neighbors.

(a) (b)
Figure: (a) Graphs with degeneracy d have cliques of size at most d + 1. (b) We
show that d-degenerate graphs have at most (n − d)3d/3 maximal cliques.

Experimental Results

We made new C implementations of the Bron–Kerbosch algorithm
(BK), the variant with pivoting (BK-pivot), and two versions of our
algorithm: without maintaining the subgraph (BK-hybrid) and with
the subgraph (BK-degen). We then compared our results with a state-
of-the-art algorithm that uses fancy bit tricks (Uno).

graph d BK BK-pivot BK-hybrid BK-degen Uno
foldoc 12 4.2sec 9sec < 1sec 1sec < 1sec
patents 24 > 5min > 5min 4.3sec 5.3sec 2.2sec
internet 25 19.4sec 10.3sec < 1sec < 1 sec <1sec∗
condmat 29 > 3min 65sec 1.6sec 2.61sec < 1sec
eatRS 34 19.8sec 53sec 12.3sec 9.12sec 14.9sec
polblogs 36 > 3min 2sec 1.5sec 1.2sec 1.8sec
hep-th 37 > 5min 69.6sec 22.6sec 17.2sec 41.5sec∗
astro 56 > 3min 12.3sec 1.4sec 3.14sec < 1sec
yeast 64 > 3min 81sec 44.3sec 20.5sec 121.1sec∗

days-all 73 > 5min 379.1sec 206.5sec 51.4sec 10min 25sec
ND-www 155 > 5min > 5min 27.8sec 41.11sec 9.7sec∗

∗ The algorithm did not correctly report all maximal cliques.

Conclusion

Our algorithm is near-optimal in theory, and works fast in practice.
[1] Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9),

575–577 (1973)
[2] Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)
[3] Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques

and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

Supported by: Office of Naval Research award N00014-08-1-1015.

