
This gives three methods to calculate P(Z|X,ϴ).

The bound on each method’s computational

complexity is below, along with the approximate

number of operations required to find P(Z|X,ϴ)

in the above graph.

1. Assume Gaussian Data

2. Assume Discrete Data (binary case, k=2)

•d

Markov Blankets

• Set of observed nodes “surrounding” missing

set Zj is the Markov blanket, denoted Bj.

• Only conditioning on a set’s Markov blanket

can reduce computational complexity

Computational Complexity

Current Work

Example: Rainfall Measurements

• Efficiently balance multiple C.I. sub-problems

during imputation

• Learning the edge structure of the MRF

• 35 rainfall sensors across northern India

• MRF has a node for each node/day

combination in a 122 day season.

• Edges are KNN spatially, Markov in time.

Example MRF with two 

C.I. sets (Zj and Zk)
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Main Ideas

Conditional Independence in Markov 

Random Fields (MRFs)

• Efficiently impute missing data in network

• Markov blankets

• Conditionally independent subsets

• Allow unknown model parameters

Basic MRF:

• Nodes correspond to measurements

• Edges connect directly related nodes

Conditional Independence (C.I.):

• Denote set of unobserved nodes as Z

• Denote set of observed nodes as X (white)

• Missing sets Zj and Zk are C.I. if all paths

between the two are “cut off” by observed

nodes (in white).

Conditionally Independent Subsets

left: Markov Blanket of Zj

right: Decomposition into C.I. sub-problems

• Decomposition into conditionally independent

sub-problems

• Can be combined with Markov blankets as

shown below

Parameter Estimation via EM

• Simultaneously estimate parameters and

impute missing data using Expectation

Maximization (EM) algorithm:

• E-step is equivalent to previously discussed

methods for imputing missing data
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E Step

M Step

Zt+1  = Most likely Z given X and ϴt

ϴt+1  = Most likely ϴ given X and Zt+1
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Left: Missing data pattern (X=white,Z=black,B=gray)

Right: Complexity of imputation methods

?

??

Zj

Zk

?

??

Zj

Bj ?

??


