Imputing Missing Data in Sensor Networks via Markov Random Fields Scalable Methods for the Nicholas Navaroli, Scott Triglia, Padhraic Smyth

UCIRVINE UNIVERSITY of CALIFORNIA

Main Ideas

- Efficiently impute missing data in network Markov blankets
- Conditionally independent subsets
- Allow unknown model parameters

Conditional Independence in Markov Random Fields (MRFs)

Basic MRF:

- Nodes correspond to measurements
- Edges connect directly related nodes

Conditional Independence (C.I.):

- Denote set of unobserved nodes as Z

• Denote set of observed nodes as X (white) • Missing sets Z_i and Z_k are C.I. if all paths between the two are "cut off" by observed nodes (in white).

Example MRF with two C.I. sets (Z_i and Z_k)

Markov Blankets

• Set of observed nodes "surrounding" missing set Z_i is the *Markov blanket*, denoted B_i

 $P(Z_j|X,\theta) = P(Z_j|B_j,\theta)$

• Only conditioning on a set's Markov blanket can reduce computational complexity

University of California, Irvine

Method	Complexity
Naive	$O(X ^3)$
MB	$O(B ^3)$
MB/CI	$O(\max_i B_i ^3)$

Method	Complexity
Naive	$O(k^{ X })$
MB	$O(k^{ B })$
MB/CI	$O(\max_i k^{ B_i })$

This research was supported by grant MURI ONR 446667-23055

• Efficiently balance multiple C.I. sub-problems during imputation Learning the edge structure of the MRF

Parameter Estimation via EM

estimate parameters and Expectation data using

 Z^{t+1} = Most likely Z given X and Θ^{t}

 Θ^{t+1} = Most likely Θ given X and Z^{t+1}

• E-step is equivalent to previously discussed methods for imputing missing data

Example: Rainfall Measurements

• 35 rainfall sensors across northern India MRF has a node for each node/day combination in a 122 day season. • Edges are KNN spatially, Markov in time.

MB/CI MB Left: Missing data pattern (X=white,Z=black,B=gray) **Right:** Complexity of imputation methods

Naive

Current Work